首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(u)在(0,+∞)内具有二阶导数,且满足等式 (1)验证 (2)若f(1)=0,f’(1)=1,求函数f(u)的表达式.
设函数f(u)在(0,+∞)内具有二阶导数,且满足等式 (1)验证 (2)若f(1)=0,f’(1)=1,求函数f(u)的表达式.
admin
2019-08-12
74
问题
设函数f(u)在(0,+∞)内具有二阶导数,且
满足等式
(1)验证
(2)若f(1)=0,f’(1)=1,求函数f(u)的表达式.
选项
答案
(1)求二元复合函数[*]中必然包含f’(u)及f"(u),将[*],就能找出f’(u)与f"(u)的关系式. [*] (2)解可降阶的二阶线性微分方程的通解和特解. 在方程[*]中,令f’(u)=g(u),则f"(u)=g’(u),方程变为[*]=0,这是可分离变量微分方程,解得[*] 由初始条件f’(1)=1得C
1
=1,所以,f’(u)=[*].两边积分得 f(u)=lnu+C
2
. 由初始条件f(1)=0 C
2
=0,所以f(u)=lnu.
解析
转载请注明原文地址:https://kaotiyun.com/show/uvN4777K
0
考研数学二
相关试题推荐
已知(2,1,1,1)T,(2,1,a,a)T,(3,2,1,a)T,(4,3,2,1)T线性相关,并且a≠1,求a.
设函数f(x)=其中g(x)二阶连续可导,且g(0)=1.讨论f’(x)在x=0处的连续性.
设f(x)在x>0上有定义,且对任意正实数x,yf(xy)=xf(y)+yf(x),f’(1)=2,试求f(x).
设f(x,y)在点(0,0)处连续,且其中a,b,c为常数.(1)讨论f(x,y)在点(0,0)处是否可微,若可微则求出df(x,y)|(0,0);(2)讨论f(x,y)在点(0,0)处是否取极值,说明理由.
求下列隐函数的微分或导数:(Ⅰ)设ysinx-cos(x-y)=0,求dy;(Ⅱ)设方程确定y=y(x),求y’与y".
设函数y(x)(x≥0)二阶可导且y’(x)>0,y(0)=1.过曲线y=y(x)上任意一点P(x,y)作该曲线的切线及x轴的垂线,上述两直线与x轴所围成的三角形的面积记为S1,区间[0,x]上以y=y(x)为曲边的曲边梯形面积记为S2,并设2S1一S2恒
设其中g(x)有二阶连续导数,且g(0)=1,g’(0)=一1,求f’(x),并讨论f’(x)在(一∞,+∞)内的连续性.
设F(u,v)对其变元u,v具有二阶连续偏导数,并设则
设随机变量X的概率分布为P{X=k}=C,k=1,2,…,λ>0,求常数C。
设则f(x)的不可导点为___________。
随机试题
输卵管结扎手术常见部位是()
妊娠晚期及分娩期合并急性病毒性肝炎,对产妇威胁最大的是
符合雌激素生理作用的是()
下列属于负债的是()。
风险型决策要求未来可能发生的自然状态的概率是()。
下列各项中,属于印花税免税凭证的是()。
近年来,一些地方发生重大生产安全事故和食品安全事故给人民群众生命财产造成重大损失。从这些事件中反映出,一些干部缺乏宗旨意识、大局意识、忧患意识、责任意识,作风飘浮、管理松弛、工作不扎实,有的甚至对群众呼声和疾苦置若罔闻,对关系群众生命安全这样的重大问题麻木
根据我国《合同法》,以下对买卖合同中标的物的风险负担的表述错误的是()。
这篇小说中的“我”到美国后,做的最重要的一件事是:对“项”最致命的打击是:
DemographicindicatorsshowthatAmericansinthepostwarperiodweremoreeagerthanevertoestablishfamilies.Theyquickly
最新回复
(
0
)