首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是m×n矩阵,B是n×s矩阵,C是m×s矩阵,满足AB=C,如果秩r(A)=n,证明秩r(B)=r(C).
设A是m×n矩阵,B是n×s矩阵,C是m×s矩阵,满足AB=C,如果秩r(A)=n,证明秩r(B)=r(C).
admin
2019-05-08
36
问题
设A是m×n矩阵,B是n×s矩阵,C是m×s矩阵,满足AB=C,如果秩r(A)=n,证明秩r(B)=r(C).
选项
答案
对齐次方程组(I)ABx=0, (Ⅱ)Bx=0, 如α是(Ⅱ)的解,有Bα=0,那么ABα=0,于是α是(I)的解. 如α是(I)的解,有ABα=0,因为A是m×n矩阵,秩r(A)=n,所以Ax=0只有零解,从而Bα=0.于是α是(Ⅱ)的解. 因此方程组(I)与(Ⅱ)同解.那么s—r(AB)=s—r(B),即r(AB)=r(B). 所以r(B)=r(C).
解析
转载请注明原文地址:https://kaotiyun.com/show/uzJ4777K
0
考研数学三
相关试题推荐
设f(x)=f(x-π)+sinx,且当x∈[0,π]时,f(x)=x,求∫π3πf(x)dx.
设随机变量X的密度函数f(x)=且P{1<X<2}=P{2<X<3},则常数A=________;B=________;概率P{2<X<4}=________;分布函数F(x)=________。
已知(X,Y)在以点(0,0),(1,0),(1,1)为顶点的三角形区域上服从均匀分布,对(X,Y)作4次独立重复观察,观察值X+Y不超过1出现的次数为Z,则E(Z2)=________。
设随机变量X和Y的联合密度为(Ⅰ)试求X的概率密度f(x);(Ⅱ)试求事件“X大于Y”的概率P{X>Y};(Ⅲ)求条件概率P{Y>1|X<0.5}。
设二维随机变量(X,Y)的联合概率密度为求:(Ⅰ)系数A;(Ⅱ)(X,Y)的联合分布函数;(Ⅲ)边缘概率密度;(Ⅳ)(X,Y)落在区域R:x>0,y>0,2x+3y<6内的概率。
a,b取何值时,方程组有解?
设A=(α1,α2,…,αm),其中α1,α2,…,αm是n维列向量,若对于任意不全为零的常数k1,k2,…,km,皆有k1α1+k2α2+…+kmαm≠0,则().
确定a,b,使得x-(a+bcosx)sinx,当x→0时为阶数尽可能高的无穷小.
设有方程组AX=0与BX=0,其中A,B都是m×n阶矩阵,下列四个命题:(1)若AX=0的解都是BX=0的解,则r(A)≥r(B)(2)若r(A)≥r(B),则AX=0的解都是BX=0的解(3)若AX=0与BX=0同解,则r(A)=r(B)(4)若
(Ⅰ)设0<x<+∞,证明存在η,0<η<1,使(Ⅱ)求η关于x的函数关系的具体表达式η=η(x),并求出当0<x<+∞时函数η(x)的值域.
随机试题
知觉的理解性是指()。
下列句子有无歧义?如果有,请分析歧义产生的原因。大家都学了一个月了。
阅读《爱尔克的灯光》中的一段文字,然后回答问题。然而人的安排终于被“偶然”破坏了。这应该是一个“意外”。但是这“意外”却毫无怜悯地打击了年轻的心。我离家不过一年半光景,就接到了姐姐的死讯。……对于姐姐,她生前我没有好好地爱过她,死后也不曾做过一样
适合砌筑处于潮湿环境下的砌体的沙浆是()。
某生物制药厂的一项机电安装工程,由该市某机电工程安装公司负责,主要工程包括防雷和接地装置的安装。根据制药厂的要求,每座实验楼需安装避雷网,办公楼顶端需安装避雷针;根据接地系统的要求,需进行照明以及电子设备的接地工程。工程于2008年7月10日施行,由于各项
发票的全部联次应一次性复写或打印,内容完全一致。()
某公司成立于2013年1月1日,2013年度实现的净利润为1000万元,分配现金股利550万元,提取盈余公积450万元(所提盈余公积均已指定用途)。2014年实现的净利润为900万元(不考虑计提法定盈余公积的因素)。2015年计划增加投资,所需资金为700
甲县烟草专卖局发现葛某销售某品牌外国香烟,执法人员表明了自己的身份,并制作了现场笔录。因葛某拒绝签名,随行电视台记者范某作为见证人在笔录上签名,该局当场制作行政处罚决定书,没收15条外国香烟。葛某不服该决定,提起行政诉讼。诉讼中,县烟草专卖局向法院提交了现
某人投资某债券,买入价格为100元,一年后卖出价格为110元,期间获得利息收入10元,则该投资的持有期收益率为()。
下列各句中,没有语病的一句是()。
最新回复
(
0
)