首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是4×5矩阵,ξ1=(1,-1,1,0,0)T,ξ2=(-1,3,-1,2,0)T,ξ3=(2,1,2,3,0)T,ξ4=(1,0,-1,1,-2)T都是齐次线性方程组Ax=0的解,且Ax=0的任一解向量均可由ξ1,ξ2,ξ3,ξ4线性表出,若k1,k
设A是4×5矩阵,ξ1=(1,-1,1,0,0)T,ξ2=(-1,3,-1,2,0)T,ξ3=(2,1,2,3,0)T,ξ4=(1,0,-1,1,-2)T都是齐次线性方程组Ax=0的解,且Ax=0的任一解向量均可由ξ1,ξ2,ξ3,ξ4线性表出,若k1,k
admin
2019-06-29
105
问题
设A是4×5矩阵,ξ
1
=(1,-1,1,0,0)
T
,ξ
2
=(-1,3,-1,2,0)
T
,ξ
3
=(2,1,2,3,0)
T
,ξ
4
=(1,0,-1,1,-2)
T
都是齐次线性方程组Ax=0的解,且Ax=0的任一解向量均可由ξ
1
,ξ
2
,ξ
3
,ξ
4
线性表出,若k
1
,k
2
,k
3
,k
4
是任意常数,则Ax=0的通解是 ( )
选项
A、k
1
ξ
1
+k
2
ξ
2
+k
3
ξ
3
+k
4
ξ
4
.
B、k
1
ξ
1
+k
2
ξ
2
+k
3
ξ
3
.
C、k
2
ξ
2
+k
3
ξ
3
.
D、k
1
ξ
1
+k
3
ξ
3
+k
4
ξ
4
.
答案
D
解析
Ax=0的任一解向量均可由ξ
1
,ξ
2
,ξ
3
,ξ
4
线性表出,则必可由ξ
1
,ξ
2
,ξ
3
,ξ
4
的极大线性无关组表出,且ξ
1
,ξ
2
,ξ
3
,ξ
4
的极大线性无关组即是Ax=0的基础解系.因
(ξ
1
,ξ
2
,ξ
3
,ξ
4
)=
故知ξ
1
,ξ
3
,ξ
4
线性无关,是极大线性无关组,是Ax=0的基础解系,(D)是Ax=0的通解,故应选(D).
转载请注明原文地址:https://kaotiyun.com/show/v7V4777K
0
考研数学二
相关试题推荐
已知ABC=D,其中,则B*=________。
设A为三阶矩阵,且|A|=3,则|(-2A)*|=______
曲线y=的斜渐近线方程为_______。
下列矩阵中,与矩阵相似的为()
A、 B、 C、 D、 C积分区域D可表示为D={(x,y)|一1≤x≤0,一x≤y≤2一x2}∪{(x,y)|0≤x≤1,x≤y≤2一x2}.D关于y轴对称,而xy关于x为奇函数,因此
设n元线性方程组Ax=b,其中当a为何值时,该方程组有无穷多解,并求通解。
设三阶实对称矩阵A的各行元素之和均为3,向量α1=(一1,2,一1)T,α2=(0,一1,1)T是线性方程组Ax=0的两个解。求正交矩阵Q和对角矩阵,使得QTAQ=。
设。当实数a为何值时,方程组Ax=β有无穷多解,并求其通解。
已知四阶方阵A=(α1,α2,α3,α4),α1,α2,α3,α4均为四维列向量,其中α2,α3,α4线性无关,α1=2α2一α3。若β=α1+α2+α3+α4,求线性方程组Ax=β的通解。
已知函数f(x)在区间(1-δ,1+δ)内具有二阶导数,f’(x)严格单调减少,且f(1)=f’(1)=1,则()
随机试题
慢性支气管炎最常见的并发症是()
A、东莨菪碱B、安定C、巴比妥钠D、哌替啶E、氟哌利多具有镇吐作用_____。
A起自足背静脉弓B经外踝前方上行C无静脉瓣D注入胫后静脉E注入髂外静脉大隐静脉
A.重型胎盘早剥B.部分性前置胎盘C.完全性前置胎盘D.先兆子宫破裂E.子宫破裂
产后检查内容不包括
2017年6月6日,B炼油厂油罐区的2号汽油罐发生火灾爆炸事故,造成1人死亡、3人轻伤,直接经济损失420万元。该油罐为拱顶罐,容量200m3。油罐进油管从罐顶接入罐内,但未伸到罐底。罐内原有液位计,因失灵已拆除。2017年5月20日,油罐完成了
在国际海上集装箱货物运输中,集装箱设备交接时,如集装箱发生损坏时,应在集装箱设备交接单上做相关记录。集装箱设备交接单上的记录代码BR、DR分别代表()。
目前,期货交易中成交量最大的品种是( )。
债券有规定的偿还期限,债务人必须按期向债权人支付利息和偿还本金是债券的()
个人税收规划的基本内容包括()
最新回复
(
0
)