首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是4×5矩阵,ξ1=(1,-1,1,0,0)T,ξ2=(-1,3,-1,2,0)T,ξ3=(2,1,2,3,0)T,ξ4=(1,0,-1,1,-2)T都是齐次线性方程组Ax=0的解,且Ax=0的任一解向量均可由ξ1,ξ2,ξ3,ξ4线性表出,若k1,k
设A是4×5矩阵,ξ1=(1,-1,1,0,0)T,ξ2=(-1,3,-1,2,0)T,ξ3=(2,1,2,3,0)T,ξ4=(1,0,-1,1,-2)T都是齐次线性方程组Ax=0的解,且Ax=0的任一解向量均可由ξ1,ξ2,ξ3,ξ4线性表出,若k1,k
admin
2019-06-29
81
问题
设A是4×5矩阵,ξ
1
=(1,-1,1,0,0)
T
,ξ
2
=(-1,3,-1,2,0)
T
,ξ
3
=(2,1,2,3,0)
T
,ξ
4
=(1,0,-1,1,-2)
T
都是齐次线性方程组Ax=0的解,且Ax=0的任一解向量均可由ξ
1
,ξ
2
,ξ
3
,ξ
4
线性表出,若k
1
,k
2
,k
3
,k
4
是任意常数,则Ax=0的通解是 ( )
选项
A、k
1
ξ
1
+k
2
ξ
2
+k
3
ξ
3
+k
4
ξ
4
.
B、k
1
ξ
1
+k
2
ξ
2
+k
3
ξ
3
.
C、k
2
ξ
2
+k
3
ξ
3
.
D、k
1
ξ
1
+k
3
ξ
3
+k
4
ξ
4
.
答案
D
解析
Ax=0的任一解向量均可由ξ
1
,ξ
2
,ξ
3
,ξ
4
线性表出,则必可由ξ
1
,ξ
2
,ξ
3
,ξ
4
的极大线性无关组表出,且ξ
1
,ξ
2
,ξ
3
,ξ
4
的极大线性无关组即是Ax=0的基础解系.因
(ξ
1
,ξ
2
,ξ
3
,ξ
4
)=
故知ξ
1
,ξ
3
,ξ
4
线性无关,是极大线性无关组,是Ax=0的基础解系,(D)是Ax=0的通解,故应选(D).
转载请注明原文地址:https://kaotiyun.com/show/v7V4777K
0
考研数学二
相关试题推荐
已知n阶矩阵则r(A2一A)=_________。
=____________.
曲线y=x+的凹区间是________.
求:∫χarctandχ=_______.
=_______
设z==_______
下列矩阵中,与矩阵相似的为()
下列函数中,在x=0处不可导的是()
已知四阶方阵A=(α1,α2,α3,α4),α1,α2,α3,α4均为四维列向量,其中α2,α3,α4线性无关,α1=2α2一α3。若β=α1+α2+α3+α4,求线性方程组Ax=β的通解。
已知函数f(x,y)具有二阶连续偏导数,且f(1,y)=0,f(x,1)=0,f(x,y)dxdy=a,其中D={(x,y)|0≤x≤1,0≤y≤1},计算二重积分I=xyf"xy(x,y)dxdy。
随机试题
根据骨度分寸,除哪项外。两者间距都是9寸
A.运铁蛋白浓度降低B.血清铁浓度下降C.血红蛋白和红细胞比积下降D.血清铁浓度下降、运铁蛋白浓度降低和游离原卟啉浓度升高E.运铁蛋白浓度降低、游离原卟啉浓度升高符合铁减少期的指标为()
(2010年)下列各点中为二元函数z=x3一y3一3x2+3y一9x的极值点的是()。
下列连续梁(T构)的合龙、体系转换和支座反力调整的规定,符合规范的有()。
流转课税是以流转额为课税对象的税类,流转额包括()。
某企业于2015年5月1日采用融资租赁方式从租赁公司租入一台设备,设备款为50000元,租期为5年,到期后设备归企业所有。企业的资金成本率为10%。若租赁公司提出的租金方案有四个:方案A:每年年末支付15270元,连续付5年。方案B:
在某次旅游安全事故中,造成旅游者3人轻伤,经济损失3万余元,该事故属于()。
归因即对自我行为的原因分析,包括三个成分:内外源、稳定性和______。
为了保证其他主机能接入Internet,在如图1-4所示的host1eth1网卡“Internet连接共享”应如何选择?请为图1-2中eth1网卡配置Internet协议属性参数。IP地址:(1);子网掩码:(2);默认网关
WhenIheardthenoiseinthenextroom,Icouldn’tresisthaveapeep.
最新回复
(
0
)