首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(χ)= (Ⅰ)讨论f(χ)的连续性,若有间断点并指出间断点的类型; (Ⅱ)判断f(χ)在(-∞,1]是否有界,并说明理由.
设f(χ)= (Ⅰ)讨论f(χ)的连续性,若有间断点并指出间断点的类型; (Ⅱ)判断f(χ)在(-∞,1]是否有界,并说明理由.
admin
2020-05-09
76
问题
设f(χ)=
(Ⅰ)讨论f(χ)的连续性,若有间断点并指出间断点的类型;
(Ⅱ)判断f(χ)在(-∞,1]是否有界,并说明理由.
选项
答案
(Ⅰ)当χ≠0,χ≠1时,显然f(χ)连续.在χ=0处,由 [*] [*]f(χ)在点χ=0处不连续,且点χ=0是f(χ)的第一类间断点. 在χ=1处,由 [*] [*]f(χ)在点χ=1处既左连续又右连续,于是f(χ)在点χ=1处连续. 因此f(χ)在(-∞,0),(0,+∞)连续,χ=0是f(χ)的第一类间断点. (Ⅱ)题(Ⅰ)中已证明这个分段函数在(-∞,0],(0,1]连续,且[*]f(χ)存在,要判断f(χ)在(-∞,1]上的有界性,只需再考察[*]f(χ),即 [*] 因f(χ)在(-∞,0]连续,又[*]f(χ)存在[*]f(χ)在(-∞,0]有界.f(χ)在(0,1]连续,又[*]f(χ)存在[*]f(χ)在(0,1]有界.因此f(χ)在(-∞,1]有界.
解析
转载请注明原文地址:https://kaotiyun.com/show/v984777K
0
考研数学二
相关试题推荐
求
设f(x)在[a,b]上连续可导,且f(a)=f(b)=0.证明:|f(x)|≤∫abf’(x)|dx(a<x<b).
计算行列式
[*]
设A为n阶矩阵,α0≠0,满足Aα0=0,向量组α1,α2满足Aα1=α0,A2α2=α0.证明α1,α2,α3线性无关.
设A是n阶矩阵,k为正整数,α是齐次方程组AkX=0的一个解,但是Ak-1α≠0.证明α,Aα,…,Ak-1α线性无关.
设矩阵行列式|A|=一1,又A*有一个特征值λ0,属于λ0的一个特征向量为α=(一1,一1,1)T,求a,b,c及λ0的值.
设a1,a2,…,an是一组n维向量,证明它们线性无关的充分必要条件是任一n维向量都可由它们线性表示。
设f(χ)二阶可导,f(0)=0,令g(χ)=(1)求g′(χ);(2)讨论g′(χ)在χ=0处的连续性.
设f(χ)=,求f(χ)的间断点并判断其类型.
随机试题
就使用范围而言,只为一个或几个部门提供服务的网络是
抗人禽流感病毒药物主要包括()和()两大类。
与下列α-氨基酸相应的α-酮酸,何者是三羧酸循环的中间产物
A.皮质醇B.醛固酮C.甲状腺激素D.去甲肾上腺素可刺激机体产热活动增强,起效快但持续时间较短的是
某人在参加一次聚餐3天后,突然出现发热、腹痛和腹泻。腹泻始为水样便,1天后转变为黏液脓血便,并有里急后重感。根据以上症状,应考虑的疾病是
普通玻璃经过风压淬火法处理后是什么玻璃?[2012—037,2011—011,2010—002,2009—050,2008—040,2007—044]
下列关于估算模式的说法,正确的有()。
下列会计科目中,在编制会计报表时属于资产项目的是()。
公文的主体部分一般包括()。
列举学界对世界现代史开端的不同观点。(东北师范大学2000年世界现代史真题)
最新回复
(
0
)