首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在(—∞,+∞)内有定义,且对于任意x与y均有f(x+y)=f(x)ey+f(y)ex,又设f′(0)=a(a≠0),试证明对任意x,f′(x)都存在,并求f(x)。
设f(x)在(—∞,+∞)内有定义,且对于任意x与y均有f(x+y)=f(x)ey+f(y)ex,又设f′(0)=a(a≠0),试证明对任意x,f′(x)都存在,并求f(x)。
admin
2018-12-29
41
问题
设f(x)在(—∞,+∞)内有定义,且对于任意x与y均有f(x+y)=f(x)e
y
+f(y)e
x
,又设f′(0)=a(a≠0),试证明对任意x,f′(x)都存在,并求f(x)。
选项
答案
将x=y=0代入f(x+y)=f(x)e
y
+f(y)e
x
,得f(0)=0。由导数定义得 [*] =f(x)+f′(0)e
x
=f(x)+ae
x
, 所以对任意x,f′(x)都存在,且f′(x)=f(x)+ae
x
。 解此一阶线性方程,得 f(x)=e
∫dx
(∫ae
x
e
—∫dx
dx+C)=e
x
(ax+C), 再由f(0)=0,得C=0,即f(x)=axe
x
。
解析
转载请注明原文地址:https://kaotiyun.com/show/vDM4777K
0
考研数学一
相关试题推荐
设则f(x)在x=0处().
已知抛物线y=ax2+bx(其中a0)在第一象限内与直线x+y=5相切,且此抛物线与x轴所围成的平面图形的面积为S,问当a,b为何值时,S最大?最大值是多少?
在上半平面求一条向上凹的曲线,其上任一点P(x,y)处的曲率等于此曲线在该点处的法线段PQ长度的倒数(Q是法线与x轴的交点),且曲线在点(1,1)处的切线与x轴平行.
设X1,X2,…,X25是取自于正态总体N(μ,9)的样本,其中μ为未知参数,如果对检验问题H0:μ=μ0,H1:μ≠μ0,取检验的拒绝域为W={(X1,X1,…,X25):}其中试决定常数C,使检验的显著性水平为0.05.
设三阶实对称矩阵A的特征值分别为0,1,1,是A的两个不同的特征向量,且A(α1+α2)=α2.求正交矩阵Q,使得QTAQ为对角矩阵.
已知非齐次线性方程组有3个线性无关的解.求a,b的值及方程组的通解.
A和B均是m×n矩阵,秩r(A)+r(B)=n,若BBT=E且B的行向量是齐次方程组AX=0的解,P是M阶可逆矩阵,证明:矩阵pb的行向量是Ax=0的基础解系.
利用代换u=ycosx将微分方程y”cosx一2y’sinx+3ycosx=ex化简,并求出原方程的通解.
求下列方程的通解:
设f(x),g(x)的定义域为R,且它们在x0可导,证明:在点x0可导的充要条件是f(x0)=g(x0),fˊ(x0)=gˊ(x0)
随机试题
溃疡性结肠炎必有的症状是()
治疗坐骨神经痛应选取的主穴为
下列有关口对口人工呼吸的叙述不正确的是
口服地西泮不能应用于
薄、楔束的功能是
人民法院在审判过程中,如果有被告经依法传唤,无正当理由而拒不到庭的,人民法院可以将其拘传。人民法院依法拘传被告人下列做法哪些不符合刑事诉讼法相关规定?
按照PDCA循环开展项目质量管理工作时,P阶段的工作内容是()。
货物查验结束后,报关员在阅读“海关进出境货物查验记录单”时,应注意的情况包括()。
某公司月成本考核例会上,各部门经理正在讨论、认定直接人工效率差异的责任部门。根据你的判断,该责任部门应是()。
ShouldPetsBeForbiddeninDormitory?1.现在很多大学生在寝室养宠物2.有人赞成,有人则反对3.我的观点
最新回复
(
0
)