首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为3阶矩阵,α1,α2,α3是线性无关的3维列向量,且满足 Aα1=α1+α2+α3,Aα2=2α2+α3,Aα3=2α2+3α3。 求可逆矩阵P使得P—1AP为对角矩阵。
设A为3阶矩阵,α1,α2,α3是线性无关的3维列向量,且满足 Aα1=α1+α2+α3,Aα2=2α2+α3,Aα3=2α2+3α3。 求可逆矩阵P使得P—1AP为对角矩阵。
admin
2019-03-23
15
问题
设A为3阶矩阵,α
1
,α
2
,α
3
是线性无关的3维列向量,且满足
Aα
1
=α
1
+α
2
+α
3
,Aα
2
=2α
2
+α
3
,Aα
3
=2α
2
+3α
3
。
求可逆矩阵P使得P
—1
AP为对角矩阵。
选项
答案
已得知B的特征值分别是1,1,4,于是解(E—B)x=0,得矩阵B属于特征值1的线性无关的特征向量β
1
=(—1,1,0)
T
,β
2
=(—2,0,1)
T
;解(4E—B)x=0,得矩阵B属于特征值4的特征向量β
2
=(0,1,1)
T
。 令P
2
=(β
1
,β
2
,β
3
),则有P
2
—1
BP
2
=[*],将P
1
—1
AP
1
=B代入可得 P
2
—1
P
1
—1
AP
1
P
2
=[*] 令P=P
1
P
2
=(α
1
,α
2
,α
3
)[*]=(—α
1
+α
2
,—2α
1
+α
3
,α
2
+α
3
), 则 P
—1
AP=[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/vHV4777K
0
考研数学二
相关试题推荐
若α1,α2,α3线性无关,那么下列线性相关的向量组是
设A为n阶正交矩阵,α和β都是n维实向量,证明:(1)内积(α,β)=(Aα,Aβ).(2)长度‖Aα‖=‖α‖.
3阶矩阵,已知r(AB)小于r(A)和r(B),求a,b和r(AB).
设α1,α2,…,αs是一个n维向量组,β和γ也都是n维向量.判断下列命题的正确性.①如果β,γ都可用α1,α2,…,αs线性表示,则β+γ也可用α1,α2,…,αs线性表示.②如果β,γ都不可用α1,α2,…,αs线性表示,则β+γ也
设α,β都是n维列向量时,证明①αβT的特征值为0,0,…,0,βTα.②如果α不是零向量,则α是αβT的特征向量,特征值为βTα.
已知非齐次线性方程组有3个线性无关的解.(1)证明此方程组的系数矩阵A的秩为2.(2)求a,b的值和方程组的通解.
判断下列函数的单调性:
设f(x)在[a,b]上可导f’(x)+[f(x)]2一∫axf(t)dt=0,且∫a-bf(t)dt=0.证明:∫axf(t)dt在(a,b)的极大值不能为正,极小值不能为负;
记平面区域D={(x,y)|x|+|y|≤1),计算如下二重积分:(1)其中f(t)为定义在(一∞,+∞)上的连续正值函数,常数a>0,b>0;(2),常数λ>0.
已知曲线L的方程406讨论L的凹凸性;
随机试题
考生文件夹下存在一个数据库文件“samp2.accdb”,里面已经设计好表对象“tDoctor”“tOf—fice”“tPatient”和“tSubscribe”,同时还设计出窗体对象“fQuery”。试按以下要求完成设计。创建一个查询,查找预约了但没
滴定管、容量瓶、移液管在使用之前都需要用试剂溶液进行润洗。()
试述信用在市场经济运行中的二重作用。
对下列句子中画线的词的解释,不正确的一项是()。
步行街两侧的商铺在上部各层设置回廊和连接天桥时,应保证步行街上部各层开口面积不应小于步行街地面面积的()。
完成系统的配置和安装,属于开发会计信息系统全过程中的()阶段。
下列说法中,不正确的有()。
在有几种可能解答的问题情境中,个体倾向于很快地检验假设,且常常出错的认知方式被称之为场独立型。()
“蓬生麻中,不扶而直;白沙在涅,与之俱黑。故君子居必择乡,游必就士,所以防邪辟而近中正也。”这段话是我国古代思想家()。
StructureoftheCanadianGovernmentI.IntroductionA.CanadiangovernmentsystembeingthoughttoimitateBritishsystem—Ca
最新回复
(
0
)