首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设X和Y为相互独立的连续型随机变量,它们的密度函数分别为f1(x),f2(x),它们的分布函数分别为F1(x),F2(x),则( ).
设X和Y为相互独立的连续型随机变量,它们的密度函数分别为f1(x),f2(x),它们的分布函数分别为F1(x),F2(x),则( ).
admin
2019-03-11
73
问题
设X和Y为相互独立的连续型随机变量,它们的密度函数分别为f
1
(x),f
2
(x),它们的分布函数分别为F
1
(x),F
2
(x),则( ).
选项
A、f
1
(x)+f
2
(x)为某一随机变量的密度函数
B、f
1
(x)f
2
(x)为某一随机变量的密度函数
C、F
1
(x)+F
2
(z)为某一随机变量的分布函数
D、F
1
(x)F
2
(x)为某一随机变量的分布函数
答案
D
解析
可积函数f(x)为随机变量的密度函数,则f(x)≥0且∫
-∞
+∞
f(x)dx=1,显然(A)不
对,取两个服从均匀分布的连续型随机变量的密度函数验证,(B)显然不对,又函数F(x)为
分布函数必须满足:(1)0≤F(x)≤1;(2)F(x)单调不减;(3)F(x)右连续;(4)F(-∞)=0,
F(+∞)=1,显然选择(D).
转载请注明原文地址:https://kaotiyun.com/show/vRP4777K
0
考研数学三
相关试题推荐
设X服从参数为λ的泊松分布,P{X=1}=P{X=2},则概率P{0<X2<3}=________。
求级数的收敛域.
α1=,α2=,α3=,α4=,α5=,求极大线性无关组,并把其余向量用极大线性无关组线性表出.
若y1,y2,y3是二阶非齐次线性微分方程(1)的线性无关的解,试用y1,y2,y3表达方程(1)的通解.y〞+P(x)yˊ+Q(x)y=f(x)(1)
设a0=1,a1=一2,a2=an(n≥2).证明:当|x|<1时,幂级数收敛,并求其和函数S(x).
已知齐次线性方程组(Ⅰ)的基础解系为ξ1=[1,0,1,1]T,ξ2=[2,1,0,一1]T,ξ3=[0,2,1,一1]T,添加两个方程后组成齐次线性方程组(Ⅱ),求(Ⅱ)的基础解系.
设(I)和(Ⅱ)是两个四元齐次线性方程组,(I)为(Ⅱ)有一个基础解系(0,1,1,0)T,(一1,2,2,1)T.求(I)和(Ⅱ)的全部公共解.
设线性方程组AX=β有3个不同的解γ1,γ2,γ3,r(A)=n一2,n是未知数个数,则()正确.
已知事件A与B相互独立,P(A)=a,P(B)=b。如果事件C发生必然导致事件A与B同时发生,则事件A、B、C均不发生的概率为________。
设则(A一2E)-1=____________.
随机试题
下列关于起重船的描述正确的是()。
关于类风湿因子(RF)的描述应除外
我国刑法中规定的共同犯罪的主犯包括:()
某工程双代号时标网络计划如下图所示,其中工作B的总时差和自由时差()。
根据《水电水利工程施工地质规程》DL/T5109—1999,水库下闸蓄水前,应对下列()问题如实作出评价。
建筑电气工程中,槽盒内的敷线要求有()。
风险量是指()。
甲公司在20×4年之前适用的所得税税率为25%,20×5年由于符合高新技术企业的条件,所得税税率变更为15%(非预期税率)。20×5年年初,甲公司递延所得税资产的余额为100万元,递延所得税负债的余额为10。20×5年,甲公司发生的交易或事项如下:(1)
学生在校期间所学内容的总和即进程安排称为()。
(1)Atacertainseasonofourlifeweareaccustomedtoconsidereveryspotasthepossiblesiteofahouse.Ihavethussur
最新回复
(
0
)