首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设非齐次线性方程组Aχ=b的系数矩阵的秩为r,η1,…,ηn-r+1是它的n-r+1个线性无关的解.试证它的任一解可表示为 χ=k1η1+…+kn-r+1ηn-r+1 (其中k1+…kn-r+1=1).
设非齐次线性方程组Aχ=b的系数矩阵的秩为r,η1,…,ηn-r+1是它的n-r+1个线性无关的解.试证它的任一解可表示为 χ=k1η1+…+kn-r+1ηn-r+1 (其中k1+…kn-r+1=1).
admin
2022-04-05
13
问题
设非齐次线性方程组Aχ=b的系数矩阵的秩为r,η
1
,…,η
n-r+1
是它的n-r+1个线性无关的解.试证它的任一解可表示为
χ=k
1
η
1
+…+k
n-r+1
η
n-r+1
(其中k
1
+…k
n-r+1
=1).
选项
答案
设χ为Aχ=b的任一解,由题设知η
1
,η
2
,…,η
n-r+1
线性无关且均为Aχ=b的解. 取ξ
1
=η
2
-η
1
,ξ
2
=η
3
-η
1
,…,ξ
n-r
=η
n-r+1
-η
1
,根据线性方程解的结构,则它们均为对应齐次方程Aχ=0的解. 下面用反证法证: 设ξ
1
,ξ
2
,…,ξ
n-r
线性相关,则存在不全为零的数l
1
,l
2
,…,l
n-r
使得 l
1
ξ
1
+l
2
ξ
2
+…+l
n-r
ξ
n-r
=0, 即l
1
(η
2
-η
1
)+l
2
(η
3
-η
1
)+…+l
n-r
(η
n-r+1
-η
1
)=0, 亦即-(l
1
+l
2
+…+l
n-r
)η
1
+l
1
η
2
+l
2
η
3
+…+l
n-r
η
n-r+1
=0. 由η
1
,η
2
,…,η
n-r+1
线性无关知 -(l
1
+l
2
+…+l
n-r
)=l
1
=l
2
=…=l
n-r
=0,与 与l
1
,l
2
,…,l
n-r
不全为零矛盾,故假设不成立.因此ξ
1
,ξ
2
,…,ξ
n-r
线性无关,是Aχ=0的一组基. 由于χ,η
1
均为Aχ=b的解,所以χ-η
1
,为Aχ=0的解,因此χ-η
1
,可由ξ
1
,ξ
2
,…,ξ
n-r
,一线性表示,设 χ-η
1
=k
2
ξ
1
+k
3
ξ
2
+…+k
n-r+1
ξ
n-r
=k
2
(η
2
-η
1
)+k
3
(η
3
-η
1
)+…+k
n-r+1
(η
n-r+1
-η
1
), 则χ=η
1
(1-k
2
-k
3
-…-k
n-r+1
)+k
2
η
2
+k
3
η
3
+…+k
n-r+1
η
n-r+1
=0, 令k
1
=1-k
2
-k
3
-…-k
n-r+1
,则k
1
+k
2
+k
3
+…+k
n-r+1
=1,从而 χ=k
1
η
1
+k
2
η
2
+…+k
n-r+1
η
n-r+1
恒成立.
解析
转载请注明原文地址:https://kaotiyun.com/show/vSl4777K
0
考研数学一
相关试题推荐
设A是n×m矩阵,B是m×n矩阵,其中n<m,E是n阶单位矩阵,若AB=E,证明B的列向量组线性无关.
设f(x)连续,(A为常数),求φ’(x)并讨论φ’(x)在x=0处的连续性.
设函数x=x(t)由方程tcosx+x=0确定,又函数y=y(x)由方程ey-2-xy=1确定,求复合函数y=y(x(t))的导数.
设,若方程组(2E+A)x=0存在非零解,求a的值,并求正交矩阵P,使P-1A2P=A.
设A为n阶可逆矩阵,A*为A的伴随矩阵,则矩阵AA*的全部特征值为__________,特征向量为______________
已知向量的逆矩阵的特征向量,则k=_________________________.
设随机变量X1,X2,…,X2n(n>2)的期望都为0,方差都为1,且任意两个的相关系数都为ρ,设U=X1+X2+…+Xn,V=Xn+1+Vn+2+…+X2n,求U和V的相关系数ρUV
设随机变量X的概率密度求常数k;
设L是以点(1,0)为圆心,R为半径的圆周(R>1),L取逆时针方向,则
求线性方程组的通解.
随机试题
A.请凭医师处方、在药师指导下购买和使用B.请仔细阅读药品使用说明书,并在医师或临床药师指导下购买和使用C.请仔细阅读药品使用说明书.并按说明使用或在药师指导下购买和使用D.请按医师处方或说明书购买和使用E.凭医师处方销售、购买和使用处方药的警
骨样骨瘤的临床特点
小儿何月龄克氏征阳性是正常的
楼梯水平段栏杆长度大于0.50m时,其扶手高度不应小于( )m。
某企业在财产清查中,发现盘亏设备一台。发现盘亏报批处理前,编制的会计分录所涉及的账户是( )。
甲注册会计师审计X公司2011年度财务报表,注册会计师在实施实质性程序中,发现以下情况:资料一:从主营业务收入和其他业务收入明细账中抽查到以下销售业务:(1)销售给A公司A产品计93.6万元(含税,增值税税率为17%),成本65万元。相关合同约定;
某园中班发生一例甲型肝炎病例,该园立即采取了以下措施:(1)将病儿进行隔离,时间为30天。(2)对病儿使用过的玩具、食具进行消毒。(3)对该中班儿童进行医学观察。请分析以下问题:(1)该园采取的措施哪些是恰当的?哪些不够明确?(2)该园还应采取哪些措施
太阳直射北回归线时,应是北半球的()。
RS-232C是(11)之间的接口标准,它是(12)协议,其机械特性规定RS-232C的D型连接器有(13)个插脚,使用RS-232C接口进行数据通信时,至少需用的信号线有(14)。当Modem和计算机相连时,按此标准需要连接的最少线数是(15)。
Whereisthewoman?
最新回复
(
0
)