首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
计算三重积分I=(χ+y+z)2dV,其中 (Ⅰ)Ω{(χ,y,z)|χ2+y2+z2≤4,z≥}; (Ⅱ)Ω{(χ,y,z)|χ2+y2+z2≤4,χ2+y2+z2≤4z}.
计算三重积分I=(χ+y+z)2dV,其中 (Ⅰ)Ω{(χ,y,z)|χ2+y2+z2≤4,z≥}; (Ⅱ)Ω{(χ,y,z)|χ2+y2+z2≤4,χ2+y2+z2≤4z}.
admin
2018-06-12
54
问题
计算三重积分I=
(χ+y+z)
2
dV,其中
(Ⅰ)Ω{(χ,y,z)|χ
2
+y
2
+z
2
≤4,z≥
};
(Ⅱ)Ω{(χ,y,z)|χ
2
+y
2
+z
2
≤4,χ
2
+y
2
+z
2
≤4z}.
选项
答案
这二个区域Ω的共同点是,它们关于yz平面与zχ平面均对称,当被积函数对χ或对y是奇函数时,则在Ω上的三重积分值为零.于是 I=[*](χ
2
+y
2
+z
2
)aV+2[*](χy+yz+zχ)dV=[*](χ
2
+y
2
+z
2
)dV. 下面分别就上述两种区域Ω求积分值I. (Ⅰ)Ω由上半球面[*]=2及锥面z=[*]围成.如图24—6(a)所示.它们的交线是: [*] 作球坐标变换,则Ω的球坐标表示为:0≤ρ≤2,0≤φ≤[*],0≤θ≤2π.于是 [*] (Ⅱ)Ω是两个球体χ
2
+y
2
+z
2
≤4与χ
2
+y
2
+z
2
≤4z(χ
2
+y
2
+(z-2)
2
≤4)的公共部分,两球面的交线是 [*] 图24—6(b)是Ω在yz平面上的截面图.作球坐标变换,并用锥面z=[*]将Ω分成Ω=Ω
1
=Ω
2
.其中 Ω
1
={(χ,y,z)|χ
2
+y
2
+z
2
≤4,z≥[*]}, Ω
2
={(χ,y,z)|χ
2
+y
2
+z
2
≤4z,z≤[*]}. 用球坐标表示: Ω
1
:0≤ρ≤2,0≤φ≤[*],0≤θ≤2π, Ω
2
:0≤ρ≤4cosφ,[*],0≤θ≤2π. 这里球面χ
2
+y
2
+z
2
=4z的球坐标方程是:ρ=4cosφ.因此 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/vTg4777K
0
考研数学一
相关试题推荐
设F(χ,y)在点(χ0,y0)某邻域有连续的偏导数,F(χ0,y0)=0,则F′y(χ0,y0)≠0是F(χ,y)=0在点(χ0,y0)某邻域能确定一个连续函数y=y(χ),它满足y0=y(χ0),并有连续的导数的_______条件.
袋中装有5个白球,3个红球,第一次从袋中任取一球,取后不放回,第二次从袋中任取2球,用Xi表示第i次取到的白球数,i=1,2.(Ⅰ)求(X1,X2)的联合分布;(Ⅰ)求P{X1=0,X2≠0},P{X1X2=0};(Ⅲ)判断X
设u(χ,y),)满足+4u=0,u(0,y)=,=y2,则u(χ,y)=_______.
当χ→0时,下列无穷小量中阶数最高的是
设f(x)=将f(x)展开为x的幂级数;
若随机变量序列X1,X2,…,Xn,…满足条件试证明:{Xn}服从大数定律.
设f(x,y)在点(0,0)处连续,且其中a,b,c为常数.讨论f(x,y)在点(0,0)处是否可微,若可微则求出df(x,y)|(0,0);
设f(x)在x=0处可导,f(0)=0,求极限。
交换二次积分的积分次序∫—10dy∫21—yf(x,y)dx=_________。
设函数f(x)连续,除个别点外二阶可导,其导函数y=f’(x)的图像如右图(1),令函数y=f(x)的驻点的个数为p,极值点的个数为q,曲线y=f(x)拐点的个数为r,则
随机试题
血红蛋白()
判断休克已纠正,除血压正常外,尿量每小时至少应稳定在【】
简述抗日民族统一战线的内容和任务。
某独立柱基的基底尺寸为2600mm×5200mm,柱底由荷载标准值组合所得的内力值:F1=2000kNF=2200kNM=1000kN.mV=200kN柱基自重和覆土标准值G=486.7kN:基础埋深和工程地质剖面如题图所示。持力层承
根据《公司法》的规定,下列关于国有独资公司的说法中。正确的是()。(2012年)
位于市区的某集团总部为增值税一般纳税人,拥有外贸进出口资格。2019年6月经营业务如下:(1)内销一批服装,向客户开具的增值税发票的金额中分别注明了价款300万元,折扣额30万元。(2)保本理财产品利息收入10.6万元。(3)转让其100%控股的一家
现代商业银行的核心和支柱业务是()。
体育教学中采用示范法时应注意的问题。
幼儿科学包括和数学认知两大子领域,应注重引导幼儿通过()进行科学学习。
中国共产党第八次全国人民代表大会的主要内容是()。
最新回复
(
0
)