首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知y1*(χ)=χe-χ+e-2χ,y2*(χ)=χe-χ+χe-2χ,y3*(χ)=χe-χ+e-2χ+χe-2χ是某二阶线性常系数微分方程y〞+py′+qy=f(χ)的三个解,则这个方程是_______.
已知y1*(χ)=χe-χ+e-2χ,y2*(χ)=χe-χ+χe-2χ,y3*(χ)=χe-χ+e-2χ+χe-2χ是某二阶线性常系数微分方程y〞+py′+qy=f(χ)的三个解,则这个方程是_______.
admin
2016-07-20
33
问题
已知y
1
*
(χ)=χe
-χ
+e
-2χ
,y
2
*
(χ)=χe
-χ
+χe
-2χ
,y
3
*
(χ)=χe
-χ
+e
-2χ
+χe
-2χ
是某二阶线性常系数微分方程y〞+py′+qy=f(χ)的三个解,则这个方程是_______.
选项
答案
y〞+4y′+4y=(χ+2)e
-χ
.
解析
(Ⅰ)由线性方程解的叠加原理
y
1
(χ),y
3
*
(χ)-y
2
*
(χ)=e
-2χ
,y
2
(χ)=y
3
*
(χ)-y
1
*
(χ)=χe
-2χ
均是相应的齐次方程的解,它们是线性无关的.于是该齐次方程的特征根是重特征根λ=-2,
相应的特征方程为
(λ+2)
2
=0,即λ
2
+4λ+4=0,
原方程为y〞+4y′+4y=f(χ). (*)
又由叠加原理知,y
*
(χ)=χe
-χ
叫是它的特解,求导得
y
*′
(χ)=e
-χ
(1-χ),y
*〞
(χ)=e
-χ
(χ-2).
代入方程(*)得
e
-χ
(χ-2)+4e
-χ
(1-χ)+4χe
-χ
=f(χ)
(χ)=(χ+2)e
-χ
所求方程为y〞+4y′+4y=(χ+2)e
-χ
转载请注明原文地址:https://kaotiyun.com/show/ZMw4777K
0
考研数学一
相关试题推荐
求极限.
=________.
设f(x),g(x)有二阶导数,且f(0)=g(0)=0,f’(0)g’(0)>0,F(x)=∫0xf(t)g(t)dt,则()
交换积分次序(x,y)dx=__________.
求微分方程y”-4y=|x|在[-1,1]上的通解.
设实二次型f(x1,x2,x3)=(x1-x2+x3)2+(x2+x3)2+(x1+ax3)2,其中a是参数.求f(x1,x2,x3)的规范形.
四名乒乓球运动员——1,2,3,4参加单打比赛,在第一轮中,1与2比赛,3与4比赛.然后第一轮中的两名胜者相互比赛决出冠亚军,两名败者也相互比赛决出第三名和第四名.于是比赛的一种最终可能结果可以记作1324(表示1胜2,3胜4,然后1胜3,2胜4).写
将一枚硬币重复掷n次,以X和Y分别表示正面向上和反面向上的次数,则X和Y的相关系数等于
用集合的描述法表示下列集合:(1)大于5的所有实数集合.(2)方程x2-7x+12=0的根的集合.(3)圆x2+y2=25内部(不包含圆周)一切点的集合.(4)抛物线y=x2与直线x-y=0交点的集合.
将一枚硬币独立地掷两次,引进事件:A1={掷第一次出现正面},A2={掷第二次出现正面},A3={正、反面各出现一次},A4={正面出现两次},则事件
随机试题
正反馈的作用常常是使生态系统远离(),负反馈的作用是使生态系统保持()。
酸性电位水消毒过程中,不受影响的因素是
Wilson’s病患者
下列哪种细胞免疫表型有助于鉴别骨髓瘤细胞和正常浆细胞
消化性溃疡最常见的并发症为
执业药师应当在其注册的执业单位执业,下列需要注册执业药师的是
“备案号”栏应填:“标记唛码及备注”栏除了填报标记唛码外,还应填报:
下列关于最佳资本结构的表述中,错误的是()。
某部门有甲、乙、丙、丁四个团队,甲、乙两个团队共有78人,乙、丙两个团队共有86人,甲、丁两个团队共有80人,请问,丙、丁两团队共有多少人?()
我国公安机关的基本职能是()。
最新回复
(
0
)