首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
判断下列各向量是否构成向量空间. (1)V1={x=(x1,x2,…,xn)|x1+2x2+…+nxn=0,xi∈R}. (2)V2={x=(x1,x2,…,xn)|x1.x2.….xn=0,xi∈R}.
判断下列各向量是否构成向量空间. (1)V1={x=(x1,x2,…,xn)|x1+2x2+…+nxn=0,xi∈R}. (2)V2={x=(x1,x2,…,xn)|x1.x2.….xn=0,xi∈R}.
admin
2020-09-25
49
问题
判断下列各向量是否构成向量空间.
(1)V
1
={x=(x
1
,x
2
,…,x
n
)|x
1
+2x
2
+…+nx
n
=0,x
i
∈R}.
(2)V
2
={x=(x
1
,x
2
,…,x
n
)|x
1
.x
2
.….x
n
=0,x
i
∈R}.
选项
答案
(1)(0,0,…,0)∈V
1
,所以V
1
非空.设α=(a,
1
,a
2
,…,a
n
)∈V
1
,β=(b
1
,b
2
,…,b
n
)∈V
1
,则α+β=(a
1
+b
1
,a
2
+b
2
,…,a
n
+b
n
),而 (a
1
+b
1
)+2(a
2
+b
2
)+…+n(a
n
+b
n
) =(a
1
+2a
2
+…+na
n
)+(b
1
+2b
2
+…+nb
n
)=0+0=0, kα=(ka
1
,ka
2
,…,ka
n
),k∈R,而 ka
1
+2ka
2
+…+nka
n
=k(a
1
+2a
2
+…+na
n
)=k.0=0, 所以α+β∈V
1
,kα∈V
1
,于是V
1
是向量空间. (2)令α=(1,0,…,0),β=(0,1,…,1),则α,β∈V
2
,而α+β=(1,1,…,1),但1×1×…×1—1≠0,所以α+β[*]V
2
.所以V
2
不是向量空间.
解析
转载请注明原文地址:https://kaotiyun.com/show/vWx4777K
0
考研数学三
相关试题推荐
方程组有非零解,则k=________。
如果β=(1,2,t)T可以由α1=(2,l,1)T,α2=(—1,2,7)T,α3=(1,—1,—4)T线性表示,则t的值是________。
设三阶方阵A的特征值是1,2,3,它们所对应的特征向量依次为α1,α2,α3,令P=(3α3,α1,2α2),则P-1AP=__________。
微分方程+y=1的通解是_________.
设A是n阶矩阵,对于齐次线性方程组Ax=0,如果矩阵A中的每行元素的和均为0,且r(A)=n-1,则方程组的通解是______
若绝对收敛,条件收敛,则()
(2012年)已知函数f(x)满足方程f’’(x)+f’(x)一2f(x)=0及f’’(x)+f(x)=2ex.(Ⅰ)求f(x)的表达式;(Ⅱ)求曲线y=f(x2)∫0x(一t2)出的拐点.
(98年)设向量α=(a1,a2,…,an)T,β=(b1,b2,…,bn)T都是非零向量,且满足条件αTβ=0.记n阶矩阵A=αβT.求:(1)A2;(2)矩阵A的特征值和特征向量.
设向量α1,α2,…,αt是齐次线性方程组.AX=0的一个基础解系,向量β不是AX=0的解,即Aβ≠0.试证明:向量组β,β+α1,β+α2,…,β+αt线性无关.
[2003年]设F(x)=f(x)g(x),其中函数f(x),g(x)在(-∞,+∞)内满足以下条件:f/(x)=g(x),g’(x)=f(x),且f(0)=0,f(x)+g(x)=2x.求出F(x)的表达式.
随机试题
A.升麻B.柴胡C.两者均有D.两者均无(1996年第111,112题)清骨散的组成药物中含有()
以下哪些条款属于劳动合同中的可备条款()
面神经肌电图检测可用来判断面神经
A、.T波B、.QRS波群C、.S-T段D、.Q-T间期E、.P波代表心房除极波形的是
背景材料:某山区桥梁工程,桥梁墩高110m。施工单位根据相关法规要求,对该项目进行了施工安全风险评估。首先进行了总体风险评估,评估结果显示桥梁总体风险评估等级为Ⅳ级。根据规定,进行了进一步的专项风险评估,并形成了风险评估报告,主要内容包括:评估依
在国际海上货物运输中,指示提单的空白背书是指()。
在编制下列预算时,正确的先后顺序为Ⅰ.销货成本预算Ⅱ.生产预算Ⅲ.采购预算Ⅳ.管理费用预算
从社会发展的主体选择的角度看,中国人民走上社会主义道路,其原因在于()
在黑盒测试方法中,设计测试用例的根据是
Ablindbabyisdoublyhandicapped.Notonlyisitunabletosee,butbecauseitcannotreceivethevisualstimulusfromitsenv
最新回复
(
0
)