首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
判断下列各向量是否构成向量空间. (1)V1={x=(x1,x2,…,xn)|x1+2x2+…+nxn=0,xi∈R}. (2)V2={x=(x1,x2,…,xn)|x1.x2.….xn=0,xi∈R}.
判断下列各向量是否构成向量空间. (1)V1={x=(x1,x2,…,xn)|x1+2x2+…+nxn=0,xi∈R}. (2)V2={x=(x1,x2,…,xn)|x1.x2.….xn=0,xi∈R}.
admin
2020-09-25
69
问题
判断下列各向量是否构成向量空间.
(1)V
1
={x=(x
1
,x
2
,…,x
n
)|x
1
+2x
2
+…+nx
n
=0,x
i
∈R}.
(2)V
2
={x=(x
1
,x
2
,…,x
n
)|x
1
.x
2
.….x
n
=0,x
i
∈R}.
选项
答案
(1)(0,0,…,0)∈V
1
,所以V
1
非空.设α=(a,
1
,a
2
,…,a
n
)∈V
1
,β=(b
1
,b
2
,…,b
n
)∈V
1
,则α+β=(a
1
+b
1
,a
2
+b
2
,…,a
n
+b
n
),而 (a
1
+b
1
)+2(a
2
+b
2
)+…+n(a
n
+b
n
) =(a
1
+2a
2
+…+na
n
)+(b
1
+2b
2
+…+nb
n
)=0+0=0, kα=(ka
1
,ka
2
,…,ka
n
),k∈R,而 ka
1
+2ka
2
+…+nka
n
=k(a
1
+2a
2
+…+na
n
)=k.0=0, 所以α+β∈V
1
,kα∈V
1
,于是V
1
是向量空间. (2)令α=(1,0,…,0),β=(0,1,…,1),则α,β∈V
2
,而α+β=(1,1,…,1),但1×1×…×1—1≠0,所以α+β[*]V
2
.所以V
2
不是向量空间.
解析
转载请注明原文地址:https://kaotiyun.com/show/vWx4777K
0
考研数学三
相关试题推荐
已知α1,α2,α3线性无关,α1+α2,aα2—α3,α1—α2+α3线性相关,则a=___________.
已知方程组有无穷多解,那么a=_______
已知且n维向量α1,α2,α3线性无关,则α1+α2,α2+2α3,Xα3+Yα1线性相关的概率为________.
设4维向量组α1=(1+a,1,1,1)T,α2=(2,2+a,2,2)T,α3=(3,3,3+a,3)T,α4=(4,4,4,4+a)T,问a为何值时,α1,α2,α3,α4线性相关?当α1,α2,α3,α4线性相关时,求其一个极大线性无关组,并将其余向
设A、B分别为m、n阶正定矩阵,试判定分块矩阵C=是否正定矩阵.
(98年)设向量α=(a1,a2,…,an)T,β=(b1,b2,…,bn)T都是非零向量,且满足条件αTβ=0.记n阶矩阵A=αβT.求:(1)A2;(2)矩阵A的特征值和特征向量.
设f=xTAx,g=xTBx是两个n元正定二次型,则下列未必是正定二次型的是()
[2004年]二次型f(x1,x2,x3)=(x1+x2)2+(x2-x3)2+(x3+x2)2的秩为_________.
[2015年]设二次型f(x1,x2,x3)在正交变换X=PY下的标准形为2y12+y22-y32,其中P=(e1,e2,e3).若Q=(e1,-e3,e2),则f(x1,x2,x3)在正交变换X=QY下的标准形为().
随机试题
完成反应式
表示各个粒径相对应的粒子占全粒子群中的含量百分量的粒度分布是
A.急性胃炎B.慢性胃炎C.胃溃疡D.胃癌E.幽门梗阻X线示龛影位于胃轮廓之内,应首先考虑的诊断是
A、《赫尔辛基宣言》B、《夏威夷宣言》C、《希波克拉底誓言》D、《大医精诚》E、《纪念白求恩》把技术和伦理完美地结合在一起的文献是
胸膜摩擦音听诊的时相特点为
关于牙槽骨的生物学特性,错误的叙述是
桥梁结构的设计基准期为______年?
高层管理者满足自我实现的需求较之低层管理者更难一些。()
某大学派出5名志愿者到西部4所中学支教,若每所中学至少有一名志愿者,则不同的分配方案共有()。
Theissue______attheconferenceisveryimportantanditwillcreateasensationnationwide.
最新回复
(
0
)