首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
判断下列各向量是否构成向量空间. (1)V1={x=(x1,x2,…,xn)|x1+2x2+…+nxn=0,xi∈R}. (2)V2={x=(x1,x2,…,xn)|x1.x2.….xn=0,xi∈R}.
判断下列各向量是否构成向量空间. (1)V1={x=(x1,x2,…,xn)|x1+2x2+…+nxn=0,xi∈R}. (2)V2={x=(x1,x2,…,xn)|x1.x2.….xn=0,xi∈R}.
admin
2020-09-25
60
问题
判断下列各向量是否构成向量空间.
(1)V
1
={x=(x
1
,x
2
,…,x
n
)|x
1
+2x
2
+…+nx
n
=0,x
i
∈R}.
(2)V
2
={x=(x
1
,x
2
,…,x
n
)|x
1
.x
2
.….x
n
=0,x
i
∈R}.
选项
答案
(1)(0,0,…,0)∈V
1
,所以V
1
非空.设α=(a,
1
,a
2
,…,a
n
)∈V
1
,β=(b
1
,b
2
,…,b
n
)∈V
1
,则α+β=(a
1
+b
1
,a
2
+b
2
,…,a
n
+b
n
),而 (a
1
+b
1
)+2(a
2
+b
2
)+…+n(a
n
+b
n
) =(a
1
+2a
2
+…+na
n
)+(b
1
+2b
2
+…+nb
n
)=0+0=0, kα=(ka
1
,ka
2
,…,ka
n
),k∈R,而 ka
1
+2ka
2
+…+nka
n
=k(a
1
+2a
2
+…+na
n
)=k.0=0, 所以α+β∈V
1
,kα∈V
1
,于是V
1
是向量空间. (2)令α=(1,0,…,0),β=(0,1,…,1),则α,β∈V
2
,而α+β=(1,1,…,1),但1×1×…×1—1≠0,所以α+β[*]V
2
.所以V
2
不是向量空间.
解析
转载请注明原文地址:https://kaotiyun.com/show/vWx4777K
0
考研数学三
相关试题推荐
设A=,A*是A的伴随矩阵,则(A*)-1=________.
方程组有非零解,则k=________。
设α=(1,-1,a)T是A=的伴随矩阵A*的特征向量,其中r(A*)=3,则a=__________
已知实二次型f(x1,x2,x3)=a(x12+x22+x32)+4x1x2+4x1x3+4x2x3经正交变换x=Py可化成标准形f=6y12,则a=_________.
已知方程组无解,则a=________.
设A=,B是3阶非零矩阵,且AB=O,则a=________
(98年)设向量α=(a1,a2,…,an)T,β=(b1,b2,…,bn)T都是非零向量,且满足条件αTβ=0.记n阶矩阵A=αβT.求:(1)A2;(2)矩阵A的特征值和特征向量.
设A为n阶非奇异矩阵,α为n维列向量,b为常数,记分块矩阵其中A*是矩阵A的伴随矩阵,E为n阶单位矩阵.证明矩阵Q可逆的充分必要条件是αTA-1α≠b.
设α1,α2,α3均为线性方程组Ax=b的解,则下列向量中α1-α2,α1—2α2+α3,(α1-α3),α1+3α2—4α3是导出组Ax=0的解向量的个数为()
随机试题
影响单车产量的因素有车辆在时间、速度、行程3方面的利用程度。()
属于不可抗力事件的是()。
A.FiguringoutthereasonsforthispeculiarEnglishvocabularyisnoeasytaskforChineseEnglishlearners.B.Topredict
A.B.C.D.E.酸性最弱的化合物是()。
对工程网络计划进行资源优化,其目的是使该工程( )。
按照《特种设备安全法》规定,特种设备产品、部件或者试制的特种设备新产品、新部件以及特种设备采用的新材料,按照安全技术规范的要求应当经负责特种设备安全监督管理的部门核准的检验机构进行()。
不用钢琴,即可进行多声部音乐创作,或看着乐谱即能在意识中再现音乐音响,产生共鸣,此特征描述的是()。
Britain’sprivateschoolsareoneofitsmostsuccessfulexports.Thechildrenofthewealthy【C1】______tothem,whetherfromChi
帧中继系统设计的主要目标是用于互联多个以下哪个网?
【B1】【B9】
最新回复
(
0
)