首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
判断下列各向量是否构成向量空间. (1)V1={x=(x1,x2,…,xn)|x1+2x2+…+nxn=0,xi∈R}. (2)V2={x=(x1,x2,…,xn)|x1.x2.….xn=0,xi∈R}.
判断下列各向量是否构成向量空间. (1)V1={x=(x1,x2,…,xn)|x1+2x2+…+nxn=0,xi∈R}. (2)V2={x=(x1,x2,…,xn)|x1.x2.….xn=0,xi∈R}.
admin
2020-09-25
92
问题
判断下列各向量是否构成向量空间.
(1)V
1
={x=(x
1
,x
2
,…,x
n
)|x
1
+2x
2
+…+nx
n
=0,x
i
∈R}.
(2)V
2
={x=(x
1
,x
2
,…,x
n
)|x
1
.x
2
.….x
n
=0,x
i
∈R}.
选项
答案
(1)(0,0,…,0)∈V
1
,所以V
1
非空.设α=(a,
1
,a
2
,…,a
n
)∈V
1
,β=(b
1
,b
2
,…,b
n
)∈V
1
,则α+β=(a
1
+b
1
,a
2
+b
2
,…,a
n
+b
n
),而 (a
1
+b
1
)+2(a
2
+b
2
)+…+n(a
n
+b
n
) =(a
1
+2a
2
+…+na
n
)+(b
1
+2b
2
+…+nb
n
)=0+0=0, kα=(ka
1
,ka
2
,…,ka
n
),k∈R,而 ka
1
+2ka
2
+…+nka
n
=k(a
1
+2a
2
+…+na
n
)=k.0=0, 所以α+β∈V
1
,kα∈V
1
,于是V
1
是向量空间. (2)令α=(1,0,…,0),β=(0,1,…,1),则α,β∈V
2
,而α+β=(1,1,…,1),但1×1×…×1—1≠0,所以α+β[*]V
2
.所以V
2
不是向量空间.
解析
转载请注明原文地址:https://kaotiyun.com/show/vWx4777K
0
考研数学三
相关试题推荐
微分方程(y+x3)dx一2xdy=0满足的特解为_________。
设A,B都是三阶矩阵,A=且满足(A*)-1B=ABA+2A2,则B=______.
微分方程xy’一y[1n(xy)一1]=0的通解为__________.
设A=,B是3阶非零矩阵,且AB=O,则Ax=0的通解是__________.
设A是秩为3的5×4矩阵,α1,α2,α3是非齐次线性方程组Ax=b的三个不同的解,如果α1+α2+2α3=(2,0,0,0)T,3α1+α2=(2,4,6,8)T,则方程组Ax=b的通解是___________。
已知方程组无解,则a=_______.
设A是三阶实对称矩阵,E三阶单位矩阵,若A2+A=2E,且|A|=4,则二次型xTAx的规范形为()
(2013年)当x→0时,1一cosx.cos2x.cos3x与axn为等价无穷小,求n与a的值.
设有两条抛物线y=nx2+1/n和y=(n+1)x2+1/(n+1).记它们交点的横坐标的绝对值为an.求级数的和.
线性方程组的通解可以表不为
随机试题
国务院总理温家宝2011年11月2日主持召开国务院常务会议,讨论通过《全国抗旱规划》提出,严重受早县、主要受旱县干早期间的饮水安全和商品粮基地、基本口粮田的基本用水需求得到较高程度保障,全国综合抗旱能力明显提高,节水型社会建设取得明显成效。达到这一目标的时
常用计算标准化率的方法有
A、胃肠道反应B、二重感染C、对耳蜗听神经损害D、肾损害E、过敏性休克青霉素的主要不良反应是
A.鲜红色B.暗红色C.柏油样便D.陶土色E.果酱样便当病人患有阿米巴痢疾或肠套叠时,其粪便为()。
关于构成假冒商标罪的犯罪行为的说法中不正确的是:( )
指定会计科目就是指定出纳专管的科目。指定科目后,才能执行出纳签字,也才能查看现金或银行存款日记账。()
只有合法行为才能引起相应的经济法律关系发生、变更或终止。( )
______指模块内部各成分联系紧密的程度,它是衡量模块独立性的重要标准。
Therearemoredrugsdispensedforpainthanforanyotherdiseaseonthisplanet.Drugcompaniesenjoyearninghugeprofitsf
Stilettoheelscouldbebannedfromtheworkplacebecauseofhealthandsafetyreasons,accordingtoBritishTradeUnionbosses.
最新回复
(
0
)