首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
向量组α1,α2,…,αa线性无关的充分必要条件是
向量组α1,α2,…,αa线性无关的充分必要条件是
admin
2019-08-12
47
问题
向量组α
1
,α
2
,…,α
a
线性无关的充分必要条件是
选项
A、α
1
,α
2
,…,α
a
均不是零向量.
B、 α
1
,α
2
,…,α
a
中任意两个向量的分量不成比例.
C、α
1
,α
2
,…,α
a
,α
s+1
线性无关.
D、α
1
,α
2
,…,α
a
中任一个向量均不能由其余s-1个向量线性表出.
答案
D
解析
(A),(B)均是线性无关的必要条件.例如,α
1
=(1,1,1)
T
,α
2
=(1,2,3)
T
,α
3
=(2,3,4)
T
,虽α
1
,α
2
,α
3
均为非零向量且任两个向量的分量都不成比例,但α
1
+α
2
-α
3
=0,α
1
,α
2
,α
3
线性相关.
(C)是线性无关的充分条件.由α
1
,α
2
,…,α
s
,α
s+1
线性无关
α
1
,α
2
,…,α
s
线性无关,但由α
1
,α
2
,…,α
s
线性无关
α
1
,α
2
,…,α
s
,α
s+1
线性无关.
(D)是线性相关的意义.故应选(D).
转载请注明原文地址:https://kaotiyun.com/show/vaN4777K
0
考研数学二
相关试题推荐
求二阶常系数线性微分方程y"+λy’=2x+1的通解,其中λ为常数.
设p(x),q(x)与f(x)均为连续函数,设y1(x),y2(x)与y3(x)是二阶非齐次线性方程y"+p(x)y’+q(x)y=f(x)①的3个解,且则式①的通
设线性无关的函数y1(x),y2(x),y3(x)均是方程y"+p(x)y’+q(x)y=f(x)的解,C1,C2是任意常数,则该方程的通解是()
已知3维向量组α1,α2,α3线性无关,则向量组α1-α2,α2一kα3,α3一α1也线性无关的充要条件是k_____________.
设A,B均为n阶矩阵,且AB=A+B,则下列命题中:①若A可逆,则B可逆;②若A+B可逆,则B可逆;③若B可逆,则A+B可逆;④A-E恒可逆.正确的个数为()
设A是m阶矩阵,B是n阶矩阵,且|A|=a,|B|=b,则|C|=__________.
设A,B均为n阶矩阵,A有n个互不相同的特征值.证明:若A的特征向量也是B的特征向量,则AB=BA.
已知α=[a,1,1]T是矩阵的逆矩阵的特征向量,那么a=____________.
要使都是线性方程组AX=0的解,只要系数矩阵A为()
设n维列向量组α1,α2,…,αm(m<n)线性无关,则n维列向量组β1,β2,…,βm线性无关的充分必要条件为()
随机试题
发现甲类传染病患者、传染性非典型性肺炎的患者或疑似患者,在城镇中的责任报告单位法定报告时限为
A.地西泮B.氟哌啶醇C.氟西汀D.金刚烷胺E.哌替啶具有抗抑郁作用的药物是
按客户的需求物业类型可分为()。
设备监理实施细则是在( )情况下制定的。
对于广播系统,从接线盒到扬声器箱的线路均应加()保护。
基础养老金由当地上年度在岗职工月平均工资和()共同决定。
投资人投资3万元认购某开放式基金,认购资金在募集期间产生的利息为5元,其对应的认购费率为1.2%,基金份额面值为1元,则其认购费用为()元。
下列方法中,属于汇率风险管理的方法有()。
某公司董事会近期在一次会议中决定,要改变以往以利润为业绩衡量的方式,转而启动选择适合战略性业绩计量的指标,那么这些指标应当具有的特征包括()。
简述建构主义学习理论的基本观点。
最新回复
(
0
)