首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设 (1)f(x,y)在点(0,0)处是否连续? (2)f(x,y)在点(0,0)处是否可微?
设 (1)f(x,y)在点(0,0)处是否连续? (2)f(x,y)在点(0,0)处是否可微?
admin
2020-03-16
68
问题
设
(1)f(x,y)在点(0,0)处是否连续?
(2)f(x,y)在点(0,0)处是否可微?
选项
答案
(1)因为0≤|f(x,y)|≤[*]f(x,y)=0=f(0,0),故f(x,y)在点(0.0)处连续。 (2)△f(x,y)=f(x,y)-f(0,0)=[*] f’
x
(0,0)=[*]=0. 因为[*],所以f(x,y)在点(0,0)处不可微.
解析
转载请注明原文地址:https://kaotiyun.com/show/vb84777K
0
考研数学二
相关试题推荐
设向量组α1,α2,α3线性无关,证明:α1+α2+α3,α1+2α2+3α3,α1+4α2+9α3线性无关.
设A为三阶矩阵,ξ1,ξ2,ξ3是三维线性无关的列向量,且Aξ1=-ξ1+2ξ2+2ξ3,Aξ2=2ξ1-ξ2-2ξ3,Aξ3=2ξ1-2ξ2-ξ3.(1)求矩阵A的全部特征值;(2)求|A*+2E|.
设三阶实对称矩阵A的秩为2,λ1=λ2=6是A的二重特征值,若α1=(1,1,0)T,α2=(2,1,1)T,α3=(-1,2,-3)T都是A的属于特征值6的特征向量.(1)求A的另一特征值和对应的特征向量;(2)求矩阵A.
设函数f(x)在[0,π]上连续,且∫0πf(x)sindx=0,∫0πf(x)cosxdx=0。证明在(0,π)内f(x)至少有两个零点。
(I)设f(x)在(一∞,+∞)上连续,证明f(x)是以l(l>0)为周期的周期函数的充要条件是对任意a∈(一∞,+∞)恒有∫aa+lf(x)dx=∫0lf(x)dx;(Ⅱ)求
设z=其中f,g均可微,求
设A是任一n(n≥3)阶方阵,A*是其伴随随矩阵,又k为常数,且k≠0,±1,则必有(kA)*=().
[2000年]设α1,α2,α3是四元非齐次线性方程组AX=b的三个解向量,且秩(A)=3,α1=[1,2,3,4]T,α2+α3=[0,1,2,3]T,c表示任意常数,则线性方程组AX=b的通解X=().
试分析下列各个结论是函数z=f(x,y)在点P0(x0,y0)处可微的充分条件还是必要条件.(1)二元函数的极限f(x,y)存在;(2)二元函数z=f(x,y)在点(x0,y0)的某个邻域内有界;(3)f(x,y0)=f(x0,y0),f(x0,y)
随机试题
中国民主革命的中心问题是()
下列关于TATA盒的叙述,正确的是
下列哪项不是氯米芬的适应证
与定影速率无关的因素是
内脏痛的主要特点是( )。
某施工单位承接了某高速公路合同段的施工任务,该合同段起讫桩号为K9+060~K14+270,公路沿线经过大量水田,水系发育,有大量软土地基,其中在K11+350附近软土厚度为4.5~8.0m,设计采用水泥粉体搅拌桩进行处理,水泥掺量14%,柱径为50cm
2014年6月,某事业单位使用财政项目补助资金购入一项专利权,价款为500000元,以财政授权支付方式支付。下列相关会计处理中,正确的是()。
共同违反治安管理的,根据违反治安管理行为人在违反治安管理行为中所起的作用,分别处罚。()
古代知识贤达的所谓“正朔之事,当明示变改,以彰异代”,说的是探寻迁革变化、循环演进的规律;“历古今之得失,验行事之成败”,道明总结兴衰成败教训之必要;“观其始末”,“定一字之褒贬”,“其教益出政教典章之先”,是要求建立明是非、通古今的价值评估;“引古规戒,
Neverhasagenerationofyoungpeoplespentsomuchmoneyyetunderstoodsolittleabouthowtomanageit.Overthepastdecade
最新回复
(
0
)