首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设y=f(x)在区间(a,b)上可微,则下列结论中正确的个数是( ) ①x0∈(a,b),若f’(x0)≠0,则△x→0时,与△x是同阶无穷小。 ②df(x)只与x∈(a,b)有关。 ③△y=f(x+△x)-f(x),则dy≠△y。 ④△x→0时,d
设y=f(x)在区间(a,b)上可微,则下列结论中正确的个数是( ) ①x0∈(a,b),若f’(x0)≠0,则△x→0时,与△x是同阶无穷小。 ②df(x)只与x∈(a,b)有关。 ③△y=f(x+△x)-f(x),则dy≠△y。 ④△x→0时,d
admin
2018-11-22
52
问题
设y=f(x)在区间(a,b)上可微,则下列结论中正确的个数是( )
①x
0
∈(a,b),若f’(x
0
)≠0,则△x→0时,
与△x是同阶无穷小。
②df(x)只与x∈(a,b)有关。
③△y=f(x+△x)-f(x),则dy≠△y。
④△x→0时,dy-△y是△x的高阶无穷小。
选项
A、1。
B、2。
C、3。
D、4。
答案
B
解析
逐一分析。
①正确。因为
所以△x→0时,
与△x是同阶无穷小。
②错误。df(x)=f’(x)△x,df(x)与x∈(a,b)及△x有关。
③错误。当y=f(x)为一次函数,f(x)=ax+b,则dy=a△x=△y。
④正确。由可微概念,f(x+△x)-f(x)=f’(x)△x+o(△x),△x→0,即
△y-d=y=o(△x),△x→0。
故选B。
转载请注明原文地址:https://kaotiyun.com/show/vbM4777K
0
考研数学一
相关试题推荐
微分方程x2y"一2xy’+2y+=x+4的通解为___________.
过(2,3)作曲线y=x2的切线,该曲线和切线围成的图形的面积为_________.
设f(x)为单调可微函数,g(x)与f(x)互为反函数,且f(2)=4,f’(2)=,f’(4)=6,则g’(4)等于().
设随机变量X的分布函数F(x)=.则P{X=1}=
设n维行向量α=(),A=E—αTα,B=E+2αTα,则AB为().
设f(x)在[a,b]上连续,f(a)=f(b)=0,且fˊ+(a)<0,fˊ-(b)<0,证明:f(x)在(a,b)内必有一个零值点.
设函数y(x)(x≥0)二阶可导,且y’(x)>0,y(0)=1.过曲线y=y(x)上任意一点P(x,y)作该曲线的切线及x轴的垂线,上述两直线与x轴所围成的三角形的面积记为S1,区间[0,x]上以y=y(x)为曲边的曲边梯形面积记为S2,并设2S1一S2
求微分方程的通解,并求满足y(1)=0的特解.
(95年)将函数f(x)=x一1(0≤x≤2)展开成周期为4的余弦级数.
(07年)如图.连续函数y=f(x)在区间[一3,一2],[2,3]上的图形分别是直径为1的上、下半圆周,在区间[一2,0],[0,2]上的图形分别是直径为2的下、上半圆周.设F(x)=∫0xf(t)dt,则下列结论正确的是
随机试题
A.保湿剂B.油脂性基质C.水溶性基质D.抗氧剂E.防腐剂栓剂中的对羟基苯甲酸酯类是用作()。
做器械推举练习,膝关节伸时,髋关节的运动是()。
根据资本不同部分在剩余价值生产中的不同作用,可以把全部资本划分为()
治疗阴虚血燥型闭经,应首选的方剂是()
A、乳剂破裂B、乳剂絮凝C、乳剂分层D、乳剂转相E、乳剂酸败乳化剂类型改变导致
某公司拥有一栋旧写字楼,《房屋所有权证》记载的建筑面积为460m2。因年久失修,经房屋鉴定部门鉴定为危房,由上级总公司批准改建,建筑面积可增至600m2,该公司认为建600m2的写字楼经济上不合算,擅自建成建筑面积1000m2的写字楼。现该公司欲以该新建写
采用工程项目总承包模式的建设工程项目,发包人可将()等一系列工作全部发包给一家承包单位。
近年来的舌尖安全问题不得不让人们反思,究其原因有多方面:企业大打“价格战”,为降低成本非法使用劣质、有毒原料,为求利润丧失道德良心,而违法成本过低使企业以身试法;法律不健全,监管不到位,各监管部门职能交叠,监管边界模糊,易出现监管盲区;消费者维权意识薄弱,
EnvironmenthastakenratherabackseatpoliticallysincetheEarthsummitinRiodeJaneironearlyfiveyearsago.【C1】______t
Todayinmind-bendinglycoolstuffthatnanoparticles(纳米粒子)cando:AteamofresearchersatRiceUniversityinTexashasdemonst
最新回复
(
0
)