首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设某种商品的需求函数是Q=a-bp,其中Q是该产品的销售量,P是该产品的价格,常数a>0,b>0,且该产品的总成本函数为C=Q3-Q2+108Q+36。已知当边际收益MR=56以及需求价格弹性E=时,出售该产品可获得最大利润,试确定常数a和常数b的值,并求
设某种商品的需求函数是Q=a-bp,其中Q是该产品的销售量,P是该产品的价格,常数a>0,b>0,且该产品的总成本函数为C=Q3-Q2+108Q+36。已知当边际收益MR=56以及需求价格弹性E=时,出售该产品可获得最大利润,试确定常数a和常数b的值,并求
admin
2022-03-14
66
问题
设某种商品的需求函数是Q=a-bp,其中Q是该产品的销售量,P是该产品的价格,常数a>0,b>0,且该产品的总成本函数为C=
Q
3
-
Q
2
+108Q+36。已知当边际收益MR=56以及需求价格弹性E=
时,出售该产品可获得最大利润,试确定常数a和常数b的值,并求利润最大时的产量。
选项
答案
设Q
0
是使总利润函数L=R-C取得最大值的产量,由极值的必要条件知,Q
0
应使得边际成本MC=MR=56,即Q
0
是方程Q
2
-17Q+108=56的根,把方程改写成Q
2
-17Q+52=0,解之可得Q
0
有两个可能的值,分别是Q
1
=4,或者Q
2
=13. 从需求函数解出P=[*](a-Q),于是R=[*](aQ-Q
2
),从而利润最大时有 MR=[*](a-2Q
0
)=56 ① 又因 [*] 于是利润最大时还有 [*] ② 从①②两式可确定常数a和b,即 [*] 从上面的计算得到了使利润最大的产量Q
0
和常数a,b的两组可能值,它们分别是Q
1
=4,a=[*],[*],而对应的价格P
1
=P
2
=82,把两组值代入总利润函数计算对应的利润,不难发现,对应于第一组的利润L=82×4-C(13)=1981/6>0,符合实际,这表明使利润最大的产量Q
0
=13,且常数a=54,b=[*].
解析
转载请注明原文地址:https://kaotiyun.com/show/vbR4777K
0
考研数学三
相关试题推荐
若C,C1,C2,C3是任意常数,则以下函数中可以看作某个二阶微分方程的通解的是
设函数讨论函数f(x)的间断点,其结论为
设函数u(x,y)=φ(x+y)+φ(x—y)+∫x—yx+yψ(t)dt,其中函数φ具有二阶导数,ψ具有一阶导数,则必有()
设函数,则点(0,0)是函数z的()
设f(x)在区间[0,1]上连续,且0≤f(x)≤1,又设
设总体X的概率密度为其中θ∈(0,+∞)为未知参数,X1,X2,X3为来自总体X的简单随机样本,令T=max{X1,X2,X3).(Ⅰ)求T的概率密度;(Ⅱ)确定a,使得E(aT)=θ.
设f(x)在[0.1]上连续可导,f'(1)=0,证明:存在ξ∈[0,1],使得f'(ξ)=4.
已知函数f(x)二阶可导,曲线y=f"(x)的图形如图2—3所示,则曲线y=f(x)()
设常数a>0,双纽线(x2+y2)2=a2(x2一y2)围成的平面区域(如图)记为D,则二重积分(x2+y2)dσ=___________.
设A为三阶非零矩阵.如果二次曲面方程在正交变换下的标准方程的图形如图,则A的正特征值个数为().
随机试题
可加入三氯叔丁醇提高灭菌效果的灭菌法是
关于球后炎性假瘤的分型,下列说法哪项错误
公路隧道为Ⅳ级围岩,采用复合式衬砌,其初期支护的计算方法是()。
孔子提出“有教无类”的主张,体现()的师德规范。
坐知千里对于()相当于()对于决心
下列入侵检测系统结构中,能够真正避免单点故障的是()。
对长度为n的线性表排序,在最坏情况下,比较次数不是n(n-1)/2的排序方法是
Surprisingly,nooneknowshowmanychildrenreceiveeducationinEnglishhospitals,stilllessthecontentorqualityofthate
A、Turnerismoreinterestedinthenoticeof"OpenforDevonCreamTeas"thantheTownHall.B、Donalddoesnotwatchtelevision
A、Hewatchestoomuchtelevision.B、Hewon’tlistentoher.C、Heistoonaughtytobecontrolled.D、Hespendsallofhistimeon
最新回复
(
0
)