首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设某种商品的需求函数是Q=a-bp,其中Q是该产品的销售量,P是该产品的价格,常数a>0,b>0,且该产品的总成本函数为C=Q3-Q2+108Q+36。已知当边际收益MR=56以及需求价格弹性E=时,出售该产品可获得最大利润,试确定常数a和常数b的值,并求
设某种商品的需求函数是Q=a-bp,其中Q是该产品的销售量,P是该产品的价格,常数a>0,b>0,且该产品的总成本函数为C=Q3-Q2+108Q+36。已知当边际收益MR=56以及需求价格弹性E=时,出售该产品可获得最大利润,试确定常数a和常数b的值,并求
admin
2022-03-14
67
问题
设某种商品的需求函数是Q=a-bp,其中Q是该产品的销售量,P是该产品的价格,常数a>0,b>0,且该产品的总成本函数为C=
Q
3
-
Q
2
+108Q+36。已知当边际收益MR=56以及需求价格弹性E=
时,出售该产品可获得最大利润,试确定常数a和常数b的值,并求利润最大时的产量。
选项
答案
设Q
0
是使总利润函数L=R-C取得最大值的产量,由极值的必要条件知,Q
0
应使得边际成本MC=MR=56,即Q
0
是方程Q
2
-17Q+108=56的根,把方程改写成Q
2
-17Q+52=0,解之可得Q
0
有两个可能的值,分别是Q
1
=4,或者Q
2
=13. 从需求函数解出P=[*](a-Q),于是R=[*](aQ-Q
2
),从而利润最大时有 MR=[*](a-2Q
0
)=56 ① 又因 [*] 于是利润最大时还有 [*] ② 从①②两式可确定常数a和b,即 [*] 从上面的计算得到了使利润最大的产量Q
0
和常数a,b的两组可能值,它们分别是Q
1
=4,a=[*],[*],而对应的价格P
1
=P
2
=82,把两组值代入总利润函数计算对应的利润,不难发现,对应于第一组的利润L=82×4-C(13)=1981/6>0,符合实际,这表明使利润最大的产量Q
0
=13,且常数a=54,b=[*].
解析
转载请注明原文地址:https://kaotiyun.com/show/vbR4777K
0
考研数学三
相关试题推荐
设,则在实数域上与A合同的矩阵为
设A是3阶方阵,将A的第1列与第2列交换得B,再把B的第2列加到第3列得C,则满足AQ=C的可逆矩阵Q为()
设F1(x)与F2(x)分别是随机变量X1与X2的分布函数,为使F(x)=aF1(x)一bF2(x)是某一随机变量的分布函数,在下列给定的各组数值中应取
线性方程组则()
下述命题:①设f(x)在任意的闭区间[a,b]上连续,则f(x)在(一∞,+∞)上连续;②设f(x)在任意的闭区间[a,b]上有界,则f(x)在(一∞,+∞)上有界;③设f(x)在(一∞,+∞)上为正值的连续函数,则在(一∞,+∞)上也是正值的连续函
设A,B为n阶矩阵,且A与B相似,E为n阶单位矩阵,则().
设二次型f(x1,x2,x3)=2(a1x1+a2x2+a3x3)2+(b1x1+b2x2+b3x3)2,记证明二次型f对应的矩阵为2ααT+ββT.
设A为n阶实对称矩阵,秩(A)=n,Aij是A=(aij)n×n中元素aij的代数余子式(i,j=1,2,…,n),二次型f(x1,x2,…,xn)=xixj.记X=(x1,x2,…,xn)T,把f(x1,x2,…xn)写成矩阵形式,并证明二次型f(X
设总体X的概率密度为其中θ∈(0,+∞)为未知参数,X1,X2,X3为来自总体X的简单随机样本,令T=max{X1,X2,X3).(Ⅰ)求T的概率密度;(Ⅱ)确定a,使得E(aT)=θ.
设X1,X2,…,Xn来自正态总体X的简单随机样本,且Y1=(X1+X2+…+X6)/6,Y2=(X7+X8+X9)/3,证明统计量Z服从自由度为2的t分布.
随机试题
常用麝香草酚酒精的浓度是
下列说法错误的是:()
对国有企业改革中涉及的划拨土地使用权,下列(),经批准可保留划拨土地使用权。
统计指标的两个主要特点是( )。
简述中华人民共和国成立的历史意义。
你是单位领导,一位朋友的孩子在你单位。朋友让你平时多照顾一下他的孩子,你怎么做?
一、注意事项 1.《申论》考试,与传统作文考试不同,是对分析材料的能力、表达能力的考试。 2.作答参考时限:阅读资料40分钟,作答110分钟。 3.仔细阅读给定的资料,按照后面提出的“申论要求”依次作答。二、资料1.据称,如果从正规
Accordingtothepassage,somepeoplestartedanationalassociationsoasto______.Bysayingthatthebombalsohasadeterre
文化强国,是指这个国家具有强大的文化力量。建设社会主义文化强国
Whatdoesthewomanplantodotomorrow?
最新回复
(
0
)