首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设某种商品的需求函数是Q=a-bp,其中Q是该产品的销售量,P是该产品的价格,常数a>0,b>0,且该产品的总成本函数为C=Q3-Q2+108Q+36。已知当边际收益MR=56以及需求价格弹性E=时,出售该产品可获得最大利润,试确定常数a和常数b的值,并求
设某种商品的需求函数是Q=a-bp,其中Q是该产品的销售量,P是该产品的价格,常数a>0,b>0,且该产品的总成本函数为C=Q3-Q2+108Q+36。已知当边际收益MR=56以及需求价格弹性E=时,出售该产品可获得最大利润,试确定常数a和常数b的值,并求
admin
2022-03-14
43
问题
设某种商品的需求函数是Q=a-bp,其中Q是该产品的销售量,P是该产品的价格,常数a>0,b>0,且该产品的总成本函数为C=
Q
3
-
Q
2
+108Q+36。已知当边际收益MR=56以及需求价格弹性E=
时,出售该产品可获得最大利润,试确定常数a和常数b的值,并求利润最大时的产量。
选项
答案
设Q
0
是使总利润函数L=R-C取得最大值的产量,由极值的必要条件知,Q
0
应使得边际成本MC=MR=56,即Q
0
是方程Q
2
-17Q+108=56的根,把方程改写成Q
2
-17Q+52=0,解之可得Q
0
有两个可能的值,分别是Q
1
=4,或者Q
2
=13. 从需求函数解出P=[*](a-Q),于是R=[*](aQ-Q
2
),从而利润最大时有 MR=[*](a-2Q
0
)=56 ① 又因 [*] 于是利润最大时还有 [*] ② 从①②两式可确定常数a和b,即 [*] 从上面的计算得到了使利润最大的产量Q
0
和常数a,b的两组可能值,它们分别是Q
1
=4,a=[*],[*],而对应的价格P
1
=P
2
=82,把两组值代入总利润函数计算对应的利润,不难发现,对应于第一组的利润L=82×4-C(13)=1981/6>0,符合实际,这表明使利润最大的产量Q
0
=13,且常数a=54,b=[*].
解析
转载请注明原文地址:https://kaotiyun.com/show/vbR4777K
0
考研数学三
相关试题推荐
设A是m×n阶矩阵,B是n×m阶矩阵,则().
设常数则
设A是m×s阶矩阵,B为5×n阶矩阵,则方程组BX=0与ABX=0同解的充分条件是().
设A=E—2ξξT,其中ξ=(x1,x2,…,xn)T,且有ξTξ=1。则①A是对称矩阵;②A2是单位矩阵;③A是正交矩阵;④A是可逆矩阵。上述结论中,正确的个数是()
设函数u(x,y)=φ(x+y)+φ(x—y)+∫x—yx+yψ(t)dt,其中函数φ具有二阶导数,ψ具有一阶导数,则必有()
设随机变量X服从指数分布,则随机变量Y=min{X,2}的分布函数()
设随机变量X~N(μ,σ2),σ>0,其分布函数F(x)的曲线的拐点为(a,b),则(a,b)为()
设函数,则点(0,0)是函数z的()
设X1,X2,…,Xn(n>2)为来自总体N(0,σ2)的简单随机样本,其样本均值为.记Yi=Xi-,i=1,2,…,n.求:(Ⅰ)求Yi的方差DYi,i=1,2,…,n;(Ⅱ)求Y1与Yn的协方差Cov(Y1,Yn);(Ⅲ)
设A为三阶非零矩阵.如果二次曲面方程在正交变换下的标准方程的图形如图,则A的正特征值个数为().
随机试题
在公私关系上,符合办事公道的具体要求是公私分开。()
二期止血缺陷常用的筛查试验是
A.注射肾上腺素B.口服糖皮质激素C.沙丁胺醇气雾吸入D.口服福莫特罗E.口服茶碱
小柴胡汤治伤寒少阳证,用柴胡为君药,发挥和解少阳的作用。()
注册会计师审计应收账款的目的不应包括()
社会基本矛盾的运动总是从()的变化开始。
赤松翻译诗歌不像学院派那么_______,所以行文比较随意又贴切,最重要的是自然。但同时他又不像诗人派那样按照自己想象,按照自己写诗的风格把原作译得_______。填入画横线部分最恰当的一项是:
下列关于Serv_UFTP服务器配置的描述中,错误的是()
若语句“t=fun(fun(x,y,A),(a+b,a+C),x+y+z);”对fun函数的调用正确,则fun函数的形参个数为()。
It’snaturalforustospeculateaboutthereasonsfortheirvisit.
最新回复
(
0
)