首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是m×s阶矩阵,B是s×n阶矩阵,且r(B)=r(AB).证明:方程组BX=0与ABX=0是同解方程组.
设A是m×s阶矩阵,B是s×n阶矩阵,且r(B)=r(AB).证明:方程组BX=0与ABX=0是同解方程组.
admin
2019-07-19
35
问题
设A是m×s阶矩阵,B是s×n阶矩阵,且r(B)=r(AB).证明:方程组BX=0与ABX=0是同解方程组.
选项
答案
首先,方程组BX=0的解一定是方程组ABX=0的解.令r(B)=r且ξ
1
,ξ
2
,…,ξ
n—r
是方程组BX=0的基础解系,现设方程组ABX=0有一个解η不是方程组BX=0的解,即B≠0,显然ξ
1
,ξ
2
,…,ξ
n—r
,η
0
线性无关,若ξ
1
,ξ
2
,…,ξ
n—r
,η
0
线性相关,则存在不全为零的常数k
1
,k
2
,…,k
n—r
,k
0
,使得k
1
ξ
1
+k
2
ξ
2
+…+k
n—r
ξ
n—r
+k
0
η
0
=0,若k
0
=0,则k
1
ξ
1
+k
2
ξ
2
+…+k
n—r
ξ
n—r
=0,因为ξ
1
,ξ
2
,…,ξ
n—r
线性无关,所以k
1
=k
2
=…=k
n—r
=0,从而ξ
1
,ξ
2
,…,ξ
n—r
,0线性无关,所以k
0
≠0,故η
0
可由ξ
1
,ξ
2
,…,ξ
n—r
线性表示,由齐次线性方程组解的结构,有Bη
0
=0,矛盾,所以ξ
1
,ξ
2
,…,ξ
n—r
,η
0
线性无关,且为方程组ABX=0的解,从而n一r(AB)≥n一r+1,r(AB)≤r一1,这与r(B)=r(AB)矛盾,故方程组BX=0与ABX=0同解.
解析
转载请注明原文地址:https://kaotiyun.com/show/vfc4777K
0
考研数学一
相关试题推荐
设A为m阶实对称矩阵且正定,B为m×n实矩阵,BT为B的转置矩阵.证明:BTAB为正定矩阵的充分必要条件是B的秩r(B)=n.
级数的极限值等于()
设函数f(x)连续,且f’(0)>0,则存在δ>0,使得()
设某班车起点站上客人数X服从参数为λ(λ>0)的泊松分布,每位乘客在中途下车的概率为p(0<p<1),且中途下车与否相互独立,Y为中途下车的人数,求:(Ⅰ)在发车时有n个乘客的条件下,中途有m人下车的概率;(Ⅱ)二维随机变量(X,Y)的概率分布.
已知向量组α1,α2,α3,α4线性无关,则向量组()
假设一批产品的不合格品数与合格品数之比为R(未知常数).现在按还原抽样方式随意抽取的n件中发现k件不合格品.试求R的最大似然估计值.
设随机变量X的概率密度为f(x),则下列函数中一定可以作为概率密度的是
设f(x,y)在点(a,b)的某邻域具有二阶连续偏导数,f′y(a,b)≠0,证明由方程f(x,y)=0在x=a的某邻域所确定的隐函数y=φ(x)在x=a处取得极值b=φ(a)的必要条件是:f(a,b)=0,f′x(a,b)=0,且当r(a,b)>0时
与二次型f=x12+x22+2x32+6x1x2对应的矩阵A既合同又相似的矩阵是()
随机试题
通达公司2011年12月结账后,有关账户的部分资料如下表所示:字母G的金额应为()元。
肾萎缩时
引起急性心肌梗死的原因有
根据《药品经营质量管理规范》,关于药品批发企业药品收货与验收的说法,错误的是()。
由于乙公司发生财务困难无力偿还货款,甲公司就到期应收乙公司账款250万元与乙公司进行债务重组。甲公司同意免除乙公司50万元债务,剩余债务延期两年偿还,按年利率5%计息;同时约定,如果乙公司一年后有盈利,每年按9%的利率计息。预计乙公司一年后很可能盈利,甲公
下列人员中,发球中国注册会计师协会执业会员的是()。
按登记经济业务方式的不同,记账方法可以分为()。
下列关于剥夺政治权利附加刑如何执行问题的说法哪些是正确的?()
【S1】【S8】
Thisiswhatpeopletalkaboutwhentheytalkaboutthefuture.Theytalkaboutthepast.Theytalkaboutits【B1】______andplea
最新回复
(
0
)