首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为m阶实对称矩阵且正定,B为m×n实矩阵,BT为B的转置矩阵.证明:BTAB为正定矩阵的充分必要条件是B的秩r(B)=n.
设A为m阶实对称矩阵且正定,B为m×n实矩阵,BT为B的转置矩阵.证明:BTAB为正定矩阵的充分必要条件是B的秩r(B)=n.
admin
2018-11-22
48
问题
设A为m阶实对称矩阵且正定,B为m×n实矩阵,B
T
为B的转置矩阵.证明:B
T
AB为正定矩阵的充分必要条件是B的秩r(B)=n.
选项
答案
显然B
T
AB为对称矩阵.B
T
AB为正定矩阵[*].
解析
转载请注明原文地址:https://kaotiyun.com/show/0sM4777K
0
考研数学一
相关试题推荐
设向量组α1=(1,0,1)T,α2=(0,1,1)T,α3=(1,3,5)T不能由向量组β1=(1,1,1)T,β2=(1,2,3)T,β3=(3,4,a)T线性表示。(Ⅰ)求a的值;(Ⅱ)将β1,β2,β3由α1,α2,α3线性表示
过坐标原点作曲线y=lnx的切线,该切线与曲线y=lnx及x轴围成平面图形D。(Ⅰ)求D的面积A;(Ⅱ)求D绕直线x=e旋转一周所得旋转体的体积V。
幂级数n(x-1)n的和函数为_______。
设f(x)是连续函数。(Ⅰ)利用定义证明函数F(x)=可导,且F’(x)=f(x);(Ⅱ)当f(x)是以2为周期的周期函数时,证明函数G(x)=也是以2为周期的周期函数。
设A是秩为n-1的n阶矩阵,α1,α2是方程组Ax=0的两个不同的解向量,则Ax=0的通解必定是()
设随机变量X与Y相互独立,若X与Y分别服从X—~b(2,1/2),Y~b(3,1/2),则P{X+Y≥1}=_______。
设A,B,C是三个随机事件,P(ABC)=0,且0<P(A)C<1,则一定有()
设f=xTAx,g=xTBx是两个n元正定二次型,则下列未必是正定二次型的是()
1+x2-ex2当x→0时是x的___________阶无穷小(填数字).
设a1,a2,…,an是n个互不相同的数,b1,b2,…,bn是任意一组给定的数,证明:存在唯一的多项式f(x)=C0xn-1+C1xn-2+…+Cn-1,使得f(ai)=bi(i=1,2,…,n).
随机试题
A.抑制肠内细菌生长,促进乳酸杆菌繁殖B.与游离氨结合,从而降低血氨C.与氨合成尿素和鸟氨酸,从而降低血氨D.被细菌分解成乳酸和乙酸,降低肠道的pHE.纠正氨基酸代谢不平衡,抑制假性神经递质形成支链氨基酸治疗肝性脑病的机制是
对急性肾小球肾炎最为合适的治疗措施是
对比增强磁共振血管造影所采用的序列是
A.医生对病人的呼叫或提问给予应答B.医生的行为使某个病人受益,但却给别的病人带来了损害C.妊娠危及母亲的生命时,医生给予引产D.医生给病人实施必要的检查或治疗E.医生满足病人的一切要求【2005年考试真题】
资产组合的收益-风险特征如图5-2所示,下列说法中错误的是( )。
对购房人资格的限制属于()。
云云在某超市第一次买到了一瓶过期的酸奶.第二次又买到了没有生产日期的糖果,她从此再也没有到那家超市买过东西,她觉得那里卖的都是劣质产品。以下哪项推理方式与题干相似?
SowhyisGooglesuddenlysointerestedinrobots?That’sthequestioneveryone’saskingafteritemergedthismonththatthein
Itissaidthatmorethanoneorganization______inthiswell-knowncriminalcase.
Allchildrenare【B1】______ofhavingfriends,althoughhighselfesteemreallyhelpsthem【B2】______,saysKathyNoll.Nollisthe
最新回复
(
0
)