首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,1]上连续,在(0,1)内可导,且满足证明至少存在一点ξ∈(0,1),使得f’(ξ)=(1一ξ-1)f(ξ).
设f(x)在[0,1]上连续,在(0,1)内可导,且满足证明至少存在一点ξ∈(0,1),使得f’(ξ)=(1一ξ-1)f(ξ).
admin
2019-03-12
26
问题
设f(x)在[0,1]上连续,在(0,1)内可导,且满足
证明至少存在一点ξ∈(0,1),使得f’(ξ)=(1一ξ
-1
)f(ξ).
选项
答案
令F(x)=xe
1-x
f(x),则F(1)=f(1)由积分中值定理得[*]由原式[*]从而F(x)在[c,1]上满足罗尔定理条件,则存在ξ∈(c,1)使F’(ξ)=0. 即ξe
1-ξ
[f’(ξ)一(1一ξ
-1
)f(ξ)]=0而 ξe
1-ξ
≠0,故f’(ξ)一(1一ξ
-1
)f(ξ)=0即 f’(ξ)=(1一ξ
-1
)f(ξ).
解析
转载请注明原文地址:https://kaotiyun.com/show/vjP4777K
0
考研数学三
相关试题推荐
设α1=(1,2,0)T,α2=(1,a+2,一3a)T,α3=(一1,一b一2,a+2b)T,β=(1,3,一3)T.试讨论当a,b为何值时,(1)β不能用α1,α2,α3线性表示;(2)β能用α1,α2,α3唯一地线性表示,求表示式;(3)β能用
设α1,α2,…,αs,β1β2,…,βt线性无关,其中α1,α2,…,αs是齐次方程组AX=0的基础解系.证明Aβ1,Aβ2,…,Aβt线性无关.
设齐次方程组(I)有一个基础解系β1=(b11,b12,…,b1×2n)T,β2(b11,b22,…,b2×2n)T,…,βn=(bn1,bn2,…,bn×2n)T.证明A的行向量组是齐次方程组(Ⅱ)的通解.
证明=(n+1)an.
a为什么数时二次型x12+3x22+2x32+2ax2x3用可逆线性变量替换化为2y12一3y22+5y32?
设函数f(x)在[0,π]上连续,且∫0πf(x)dx=∫0πf(x)cosxdx=0.试证明:在(0,π)内至少存在两个不同的点ξ1,ξ2,使f(ξ1)=f(ξ2)=0.
已知随机变量X的概率密度为f(x)=Aex(B-x)(一∞<x<+∞),且E(X)=2D(X),试求:(Ⅰ)常数A,B之值;(Ⅱ)E(X2+eX);(Ⅲ)Y=|(X—1)|的分布函数F(y).
设X1,X2,…,Xn是来自总体X的简单随机样本,已知总体X服从参数为λ(λ>0)的指数分布,试求总体X的数学期望E(X)的矩估计量和最大似然估计量.
已知二维随机变量(X,Y)的概率分布为又P{X=1}=0.5,且X与Y不相关.求未知参数a,b,c;
设随机变量X~B(1,),Y~E(1),且X与Y相互独立,记Z=(2X一1)Y,(Y,Z)的分布函数为F(y,z).试求:(Ⅰ)Z的概率密度fZ(z);(Ⅱ)F(2,一1)的值.
随机试题
对因误服汽油而导致的急性中毒,宜选用下列何种溶液洗胃
A.肛裂B.直肠周围脓肿C.直肠息肉D.直肠癌E.直肠炎症直肠指诊触及柔软、光滑而有弹性的包块可见于
患者应获得公正、平等的医疗和护理服务,这体现了患者享有的何种权利
期间核查实质上是核查__________对测量仪器示值的影响是否有大的变化。
()是对建设项目安装完成后的设备和系统进行一系列试验和调整,以验证其性能能否满足验收准则。
在国际市场上,商品的国际价值是由()决定的。
民族精神和时代精神作为社会主义核心价值体系的精髓,解决的是()
SomefamiliesinAmericaandelsewherehavestartedbuyingchildfriendlymobilephonesoutfittedwithGPS(GlobalPositioningS
关系数据库是采用【】作为数据的组织方式。
•Readthetextbelowaboutdifferentkindsofconsumergoods.•ChoosethebestwordtofilleachgapfromA,B,CorDontheo
最新回复
(
0
)