首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,α3,α4,β为4维列向量,A=(α1,α2,α3,α4),若Ax=β的通解为 (-1,1,0,2)T+k(1,-1,2,0)T. (Ⅰ)β能否由α1,α2,α3线性表示?为什么? (Ⅱ)求α1,α2,α3,α4,β的一个极大无关组.
设α1,α2,α3,α4,β为4维列向量,A=(α1,α2,α3,α4),若Ax=β的通解为 (-1,1,0,2)T+k(1,-1,2,0)T. (Ⅰ)β能否由α1,α2,α3线性表示?为什么? (Ⅱ)求α1,α2,α3,α4,β的一个极大无关组.
admin
2017-10-25
63
问题
设α
1
,α
2
,α
3
,α
4
,β为4维列向量,A=(α
1
,α
2
,α
3
,α
4
),若Ax=β的通解为
(-1,1,0,2)
T
+k(1,-1,2,0)
T
.
(Ⅰ)β能否由α
1
,α
2
,α
3
线性表示?为什么?
(Ⅱ)求α
1
,α
2
,α
3
,α
4
,β的一个极大无关组.
选项
答案
(Ⅰ)先求Bx=0的基础解系,为此,首先要找出矩阵B的秩. 由题目的已知信息可得:Ax=0的基础解系中含有两个向量,故4-R(A)=2,也即R(A)=2,而由(1,0,2,1)
T
是Ax=0的解可得α
1
+2α
3
+α
4
=0,故α
4
=-α
1
-2α
3
.可知α
4
能由α
1
,α
2
,α
3
线性表示,故R(α
1
,α
2
,α
3
,α
4
)=R(α
1
,α
2
,α
3
)=R(B),也即R(B)=2.因此Bx=0的基础解系中仅含一个向量,求出Bx=0的任一非零解即为其基础解系. 由于(1,0,2,1)
T
,(2,1,1,-1)
T
均为Ax=0的解,故它们的和(3,1,3,0)
T
也为Ax=0的解,可知3α
1
+α
2
+3α
3
=0,因此(3,1,3)
T
为Bx=0的解,也即(3,1,3)
T
为Bx=0的基础解系. 最后,再求Bx=b的任何一个特解即可.只需使得Ax=b的通解中α
1
的系数为0即可,为此,令(1,1,1,1)
T
+k
1
(1,0,2,1)
T
+k
2
(2,1,1,-1)
T
中k
1
=0,k
2
=1,得(3,2,2,0)
T
是Ax=b的一个解,故(3,2,2)
T
是Bx=b和一个解. 可知Bx=b的通解为(3,2,2)
T
+k(3,1,3)
T
,k∈R (Ⅱ)与(Ⅰ)类似,先求Cx=0的基础解系. 由于C即为线性方程组Ax=b的增广矩阵,故R(C)=R(A)=2,可知Cx=0的基础解系中含有5-2=3个线性无关的解向量,为此,需要找出Cx=0的三个线性无关的解. 由于(1,0,2,1)
T
,(2,1,1,-1)
T
均为Ax=0的解,可知(1,0,2,1,0)
T
,(2,1,1-1,0)
T
均为Cx=0的解.而(1,1,1,1)
T
为Ax=b的解,可知α
1
+α
2
+α
3
+α
4
=b,也即α
1
+α
2
+α
3
+α
4
-b=0,故(1,1,1,1,-1)
T
也为Cx=0的解. 这样,我们就找到了Cx=0的三个解:(1,0,2,1,0)
T
,(2,1,1,-1,0)
T
,(1,1,1,1,-1)
T
,容易验证它们是线性无关的,故它们即为Cx=0的基础解系. 最后,易知(0,0,0,0,1)
T
为Cx=b的解,故Cx=b的通解为 (0,0,0,0,1)
T
+k
1
(1,0,2,1,0)
T
+k
2
(2,1,1,-1,0)
T
+k
3
(1,1,1,1,-1)
T
,k
I
∈R,i=1,2,3.
解析
转载请注明原文地址:https://kaotiyun.com/show/vtr4777K
0
考研数学一
相关试题推荐
设X1,X2,…,X7是总体X~N(0,4)的简单随机样本,求
设随机变量X服从参数为的指数分布,对X独立地重复观察4次,用Y表示观察值大于3的次数,求E(Y2).
设y=y(x)由方程ey+6xy+x2一1=0确定,求y"(0).
设f(x)是以T为周期的连续函数,且也是以T为周期的连续函数,则b=_________.
积分
已知f(x)是周期为5的连续函数,它在x=0的某邻域内满足关系式:f(1+sinx)一3f(1一sinx)=8x+a(x),其中a(x)是当x→0时比x高阶的无穷小,且f(x)在x=1处可导,求y=f(x)在点(6,f(6))处的切线方程.
设fn(x)=1一(1一cosx)n,求证:任意正整数中仅有一根;
将函数f(x)=x一1(0≤x≤2)展开成周期为4的余弦级数.
(1)设A是对角矩阵,并且对角线上元素两两不相等.证明和A乘积可交换的一定是对角矩阵.(2)n阶矩阵C如果和任何n阶矩阵乘积可交换,则C必是数量矩阵.
随机试题
背景某耐火材料厂新建厂区工程,主要单体为一重钢结构多层厂房工程,地下部分为混凝土灌注桩基础,地上部分柱为钢管混凝土,其他构件均为H型钢构件,钢构件的连接方式主要为高强度螺栓连接。钢构件加工过程中,驻加工厂监理发现个别构件焊接时出现咬边,经过施工单位的科
将计划分为生产计划、财务计划等的标准是()。
在火灾软件选取中,人员疏散计算方法主要有()。
外国旅行社常驻我国旅游办事机构不得从事( )。
农村居民夏某有6年吸毒史,近来感觉不适,到当地医院检查,医生根据各项检查结果确诊其感染艾滋病病毒。根据《艾滋病防治条例》,夏某可依国家“四免一关怀”政策享受相关待遇,但也应履行相关义务,夏某应履行的义务主要包括()。
随着移动支付安全技术的不断提高,多样化的安全验证方式为消费者提供了更多选择。2017年,相关受调查者使用过指纹识别方式的比例高达46%,同比增长2.5倍,这一生物识别验证方式有望成为移动支付中的主要验证方式。此外,掌纹、虹膜、人脸等生物识别技术的进一步发展
给定材料1.创客是指利用开源硬件和互联网将各种创意变为实际产品的人,他们将制造业搬到了自己桌面上,电子服装、健康手环、智能手表、导电墨水、食物烹饪器等等,用户能想象到的产品都有可能在创客手中实现。创客在带有加工车间和工作室功能的软硬件开放实验室(
依法治国是现代社会的重要标志。()
编一本书的书页.用了270个数字(重复的也算.如页码115用了2个1和1个5共3个数字).问这本书一共有多少页?()
Valentine’sDayisafestivalofromanceandaffection.Theholidayisaninterestingcombinationofpagan(异教徒的)andChristian
最新回复
(
0
)