首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,α3,α4,β为4维列向量,A=(α1,α2,α3,α4),若Ax=β的通解为 (-1,1,0,2)T+k(1,-1,2,0)T. (Ⅰ)β能否由α1,α2,α3线性表示?为什么? (Ⅱ)求α1,α2,α3,α4,β的一个极大无关组.
设α1,α2,α3,α4,β为4维列向量,A=(α1,α2,α3,α4),若Ax=β的通解为 (-1,1,0,2)T+k(1,-1,2,0)T. (Ⅰ)β能否由α1,α2,α3线性表示?为什么? (Ⅱ)求α1,α2,α3,α4,β的一个极大无关组.
admin
2017-10-25
68
问题
设α
1
,α
2
,α
3
,α
4
,β为4维列向量,A=(α
1
,α
2
,α
3
,α
4
),若Ax=β的通解为
(-1,1,0,2)
T
+k(1,-1,2,0)
T
.
(Ⅰ)β能否由α
1
,α
2
,α
3
线性表示?为什么?
(Ⅱ)求α
1
,α
2
,α
3
,α
4
,β的一个极大无关组.
选项
答案
(Ⅰ)先求Bx=0的基础解系,为此,首先要找出矩阵B的秩. 由题目的已知信息可得:Ax=0的基础解系中含有两个向量,故4-R(A)=2,也即R(A)=2,而由(1,0,2,1)
T
是Ax=0的解可得α
1
+2α
3
+α
4
=0,故α
4
=-α
1
-2α
3
.可知α
4
能由α
1
,α
2
,α
3
线性表示,故R(α
1
,α
2
,α
3
,α
4
)=R(α
1
,α
2
,α
3
)=R(B),也即R(B)=2.因此Bx=0的基础解系中仅含一个向量,求出Bx=0的任一非零解即为其基础解系. 由于(1,0,2,1)
T
,(2,1,1,-1)
T
均为Ax=0的解,故它们的和(3,1,3,0)
T
也为Ax=0的解,可知3α
1
+α
2
+3α
3
=0,因此(3,1,3)
T
为Bx=0的解,也即(3,1,3)
T
为Bx=0的基础解系. 最后,再求Bx=b的任何一个特解即可.只需使得Ax=b的通解中α
1
的系数为0即可,为此,令(1,1,1,1)
T
+k
1
(1,0,2,1)
T
+k
2
(2,1,1,-1)
T
中k
1
=0,k
2
=1,得(3,2,2,0)
T
是Ax=b的一个解,故(3,2,2)
T
是Bx=b和一个解. 可知Bx=b的通解为(3,2,2)
T
+k(3,1,3)
T
,k∈R (Ⅱ)与(Ⅰ)类似,先求Cx=0的基础解系. 由于C即为线性方程组Ax=b的增广矩阵,故R(C)=R(A)=2,可知Cx=0的基础解系中含有5-2=3个线性无关的解向量,为此,需要找出Cx=0的三个线性无关的解. 由于(1,0,2,1)
T
,(2,1,1,-1)
T
均为Ax=0的解,可知(1,0,2,1,0)
T
,(2,1,1-1,0)
T
均为Cx=0的解.而(1,1,1,1)
T
为Ax=b的解,可知α
1
+α
2
+α
3
+α
4
=b,也即α
1
+α
2
+α
3
+α
4
-b=0,故(1,1,1,1,-1)
T
也为Cx=0的解. 这样,我们就找到了Cx=0的三个解:(1,0,2,1,0)
T
,(2,1,1,-1,0)
T
,(1,1,1,1,-1)
T
,容易验证它们是线性无关的,故它们即为Cx=0的基础解系. 最后,易知(0,0,0,0,1)
T
为Cx=b的解,故Cx=b的通解为 (0,0,0,0,1)
T
+k
1
(1,0,2,1,0)
T
+k
2
(2,1,1,-1,0)
T
+k
3
(1,1,1,1,-1)
T
,k
I
∈R,i=1,2,3.
解析
转载请注明原文地址:https://kaotiyun.com/show/vtr4777K
0
考研数学一
相关试题推荐
设A为三阶矩阵,A的各行元素之和为4,则A有特征值_________,对应的特征向量为________.
设α1,…,am,β为m+1维向量,β=α1+…+αm(m>>1).证明:若α1,…,αm线性无关,则β一α1,β一αm线性无关.
设X~U(0,2),Y=X2,求Y的概率密度函数.
设f(x),g(x)在[a,b]上连续,证明:存在ξ∈(a,b),使得
设A为三阶矩阵,且|A|=3,则|(一2A)*|=_________.
证明:连续函数取绝对值后函数仍保持连续性,举例说明可导函数取绝对值不一定保持可导性.
在上半平面上求一条上凹曲线,其上任一点P(x,y)处的曲率等于此曲线在该点的法线段PQ的长度的倒数(Q为法线与x轴的交点),且曲线在点(1,1)处的切线与x轴平行.
求微分方程y"+4y’+4y=eax的通解.
设某产品的指标服从正态分布,它的标准差为σ=100,今抽了一个容量为26的样本,计算平均值1580,问在显著性水平α=0.05下,能否认为这批产品的指标的期望值μ不低于1600.
sinxcosxdx(自然数n或m为奇数)=______.
随机试题
丙酮酸脱氢酶复合体中最终接受底物脱下的2H的辅助因子是
判断由于心律失常引起晕厥最好的方法是()
某家企业为出口创汇,生产了一种新型产品,每年净外汇流量为180万美元,该产品生产6年,从第四年起,每年净外汇流量在上年基础上增长10万美元,则其国民经济外汇净现值是()(社会折现率为10%)。
《电力法》第32条规定:“用户用电不得危害供电,()安全和扰乱其秩序。对危害其安全和扰乱其秩序的,供电企业有权制止。”
下列各项中,属于利得的是()。
税务登记,是纳税人对生产、经营活动向税务机关进行登记的法定手续。根据《税收征管法》的规定,税务登记包括( )。
品牌之所以具有资产价值,最根本的原因在于()。
参观游览出发前,导游员必须提前()分钟到达出发地点。
求助者的主要心理问题包括()。心理咨询师在这段咨询中的主要目的是帮助求助者()。
Quiteanumberofpeoplehavewrittentoaskme,"Howdoyoufacelife?Haveyoueverfeltlonely,lonely【C1】______thepointo
最新回复
(
0
)