首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,α3,α4,β为4维列向量,A=(α1,α2,α3,α4),若Ax=β的通解为 (-1,1,0,2)T+k(1,-1,2,0)T. (Ⅰ)β能否由α1,α2,α3线性表示?为什么? (Ⅱ)求α1,α2,α3,α4,β的一个极大无关组.
设α1,α2,α3,α4,β为4维列向量,A=(α1,α2,α3,α4),若Ax=β的通解为 (-1,1,0,2)T+k(1,-1,2,0)T. (Ⅰ)β能否由α1,α2,α3线性表示?为什么? (Ⅱ)求α1,α2,α3,α4,β的一个极大无关组.
admin
2017-10-25
52
问题
设α
1
,α
2
,α
3
,α
4
,β为4维列向量,A=(α
1
,α
2
,α
3
,α
4
),若Ax=β的通解为
(-1,1,0,2)
T
+k(1,-1,2,0)
T
.
(Ⅰ)β能否由α
1
,α
2
,α
3
线性表示?为什么?
(Ⅱ)求α
1
,α
2
,α
3
,α
4
,β的一个极大无关组.
选项
答案
(Ⅰ)先求Bx=0的基础解系,为此,首先要找出矩阵B的秩. 由题目的已知信息可得:Ax=0的基础解系中含有两个向量,故4-R(A)=2,也即R(A)=2,而由(1,0,2,1)
T
是Ax=0的解可得α
1
+2α
3
+α
4
=0,故α
4
=-α
1
-2α
3
.可知α
4
能由α
1
,α
2
,α
3
线性表示,故R(α
1
,α
2
,α
3
,α
4
)=R(α
1
,α
2
,α
3
)=R(B),也即R(B)=2.因此Bx=0的基础解系中仅含一个向量,求出Bx=0的任一非零解即为其基础解系. 由于(1,0,2,1)
T
,(2,1,1,-1)
T
均为Ax=0的解,故它们的和(3,1,3,0)
T
也为Ax=0的解,可知3α
1
+α
2
+3α
3
=0,因此(3,1,3)
T
为Bx=0的解,也即(3,1,3)
T
为Bx=0的基础解系. 最后,再求Bx=b的任何一个特解即可.只需使得Ax=b的通解中α
1
的系数为0即可,为此,令(1,1,1,1)
T
+k
1
(1,0,2,1)
T
+k
2
(2,1,1,-1)
T
中k
1
=0,k
2
=1,得(3,2,2,0)
T
是Ax=b的一个解,故(3,2,2)
T
是Bx=b和一个解. 可知Bx=b的通解为(3,2,2)
T
+k(3,1,3)
T
,k∈R (Ⅱ)与(Ⅰ)类似,先求Cx=0的基础解系. 由于C即为线性方程组Ax=b的增广矩阵,故R(C)=R(A)=2,可知Cx=0的基础解系中含有5-2=3个线性无关的解向量,为此,需要找出Cx=0的三个线性无关的解. 由于(1,0,2,1)
T
,(2,1,1,-1)
T
均为Ax=0的解,可知(1,0,2,1,0)
T
,(2,1,1-1,0)
T
均为Cx=0的解.而(1,1,1,1)
T
为Ax=b的解,可知α
1
+α
2
+α
3
+α
4
=b,也即α
1
+α
2
+α
3
+α
4
-b=0,故(1,1,1,1,-1)
T
也为Cx=0的解. 这样,我们就找到了Cx=0的三个解:(1,0,2,1,0)
T
,(2,1,1,-1,0)
T
,(1,1,1,1,-1)
T
,容易验证它们是线性无关的,故它们即为Cx=0的基础解系. 最后,易知(0,0,0,0,1)
T
为Cx=b的解,故Cx=b的通解为 (0,0,0,0,1)
T
+k
1
(1,0,2,1,0)
T
+k
2
(2,1,1,-1,0)
T
+k
3
(1,1,1,1,-1)
T
,k
I
∈R,i=1,2,3.
解析
转载请注明原文地址:https://kaotiyun.com/show/vtr4777K
0
考研数学一
相关试题推荐
设n阶矩阵A与对角矩阵相似,则().
求微分方程y"+4y’+4y=eax的通解.
求微分方程的满足初始条件y(1)=0的解.
举例说明函数可导不一定连续可导.
设平面区域σ由σ1与σ2组成,其中,σ1={(x,y)|0≤y≤a—x,0≤x≤a},σ2={(x,y)|a≤x+y≤b,x≥0,y≥0),如图1.6—1所示,它的面密度试求(1)该薄片σ的质量m;(2)薄片σ1关于y轴的转动惯量I1与σ2关于原点的转动惯
设f(x)在区间[1,+∞)上单调减少且非负的连续函数,(1)证明:存在;(2)证明:反常积分同敛散.
求幂级数的和函数.在(a,b)内至少存在一点η,η≠ξ,使得f’’(η)=f(η).
设曲线f(x)=xn在点(1,1)处的切线与x轴的交点为(xn,0),计算
电话公司有300台分机,每台分机有6%的时间处于与外线通话状态,设每台分机是否处于通话状态相互独立,用中心极限定理估计至少安装多少条外线才能保证每台分机使用外线不必等候的概率不低于0.957
设A是n阶实对称矩阵.证明:(1)存在实数c,使对一切x∈Rn,有|xTAx|≤cxTx.(2)若A正定,则对任意正整数k,An也是对称正定矩阵.(3)必可找到一个数a,使A+aE为对称正定矩阵.
随机试题
一般情况下,一个数据库系统的外模式()
生产要素的购买者将所购生产要素未来应纳税款,通过从购入价格预先扣除的方法,把税负转嫁给生产要素的出售者,这种方法被称为
男,50岁。体重70kg。该患者体内的细胞外液量约为()
A.《难经》B.《黄帝内经》C.《本经》D.《伤寒杂病论》明确了“治寒以热药”的是
尿毒症患者,下列哪些症状与继发性甲旁亢无关
假设某企业进行负债和权益的融资,两者成本均不会随着结构的变化而变化,若想使企业的市场价值得以提高,根据净收入理论,不能采用的方法有( )。
所谓“摩尔定律”,即微处理器的速度会每()个月翻一番,同等价位的微处理器的计算速度会越来越快,同等速度的微处理器会越来越便宜。
如图所示,红、黄、绿三块大小一样的正方形纸片,放在一个正方形盒内,它们之间相互叠合。已知露在外面的部分中,红色的面积是20,黄色的面积是14,绿色的面积是10。那么正方形盒子的底面积是多少?()
文化的解释是以一个民族长期生存过程中形成的深层结构为基础的。这种深层结构的意义在于,人们不自觉地受一种__________的思维习惯与价值态度的支配而不自知。填入画横线部分最恰当的一项是:
Mostwordsare"lexicalwords",i.e.nounssignifying"things",themajorityofwhichareabstractconceptsratherthanp
最新回复
(
0
)