首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,1]上连续,且f(x)非负,试证:至少存在一点ξ∈(0,1),使得 ξf(ξ)=∫ξ1f(x)dx.
设f(x)在[0,1]上连续,且f(x)非负,试证:至少存在一点ξ∈(0,1),使得 ξf(ξ)=∫ξ1f(x)dx.
admin
2017-07-26
53
问题
设f(x)在[0,1]上连续,且f(x)非负,试证:至少存在一点ξ∈(0,1),使得
ξf(ξ)=∫
ξ
1
f(x)dx.
选项
答案
令F(x)=x∫
1
x
f(t)dt,则F(x)在[0,1]上连续,在(0,1)内可导,且F(0)=F(1)=1.∫
1
1
f(t)dt=0.由洛尔定理,存在ξ∈(0,1),使F’(ξ)=0,即∫
1
ξ
(t)dt+ξf(ξ)=0,故ξf(ξ)—∫
ξ
1
f(x)dx=0.
解析
欲证ξf(ξ)=∫
ξ
1
f(x)dx→xf(x)=∫
x
1
f(t)dt,
如作辅助函数F(x)=xf(x)一∫
x
1
f(t)dt,则
F(0)=0f(0)一∫
0
1
f(t)出≤0, F(1)=1.f(1)一∫
1
1
f(t)dt=f(1)≥0,
难以验证F(x)在[0,1]上有F(0)<0,F(1)>0.于是,可作辅助函数F(x),使得
F’(x)=xf(x)一∫
x
1
f(t)dt,
即 F’(x)=[x∫
1
x
f(t)dt]’,
即 F(x)=x∫
1
x
f(t)dt,
再用洛尔定理证明.
转载请注明原文地址:https://kaotiyun.com/show/vuH4777K
0
考研数学三
相关试题推荐
[*]
[*]
3
证明:方程x=a+bsinx(其中a>0,b>0)至少有一个正根,并且它不超过a+b.
设A为n阶矩阵,对于齐次线性方程(I)An=0和(Ⅱ)An+1x=0,则必有
函数f(μ,ν)由关系式f[xg(y),y]=x+g(y)确定,其中函数g(y)可微,且g(y)≠0,则=_____________.
设f(x)在[a,b]上连续,在(a,b)内二阶可导,f(a)=f(b)=0,证明:(I)存在εi∈(a,b),使得f(εi)=f〞(εi)(i=1,2);(Ⅱ)存在η∈(a,b),使得f(η)=f〞(η).
设A和B是任意两个概率不为0的不相容事件,则下列结论中肯定正确的是().
试确定常数A,B,C的值,使得ex(1+Bx+Cx2)=1+Ax+o(x3),其中o(x3)是当x→0时比x3高阶的无穷小.
设f(x)在[0,1]上二阶可导,且|f(x)|≤a,|f"(x)|≤b,其中a,b都是非负常数,c为(0,1)内任意一点.(1)写出f(x)在x=c处带拉格朗日型余项的一阶泰勒公式;(2)证明:|f’(c)|≤2a+.
随机试题
有机氯农药进入动物机体后,主要蓄积于
动物诊疗机构的病历档案保存期限不得少于
刘某、王某和吴某为某合伙企业的合伙人,现该合伙企业欠外债19万元,而该企业的资产值为15万元。对合伙企业债务的偿还,下列哪些说法是正确的?
根据《评标委员会和评标方法暂行规定》,评标委员会成员应当主动提出回避的情形包括()等。
【真题(中级)】支票上的下列事项,可以由出票人授权补记的事项有()。
“DNA是遗传物质”的教学片段一、课件展示很早以前,大家一致认为,被视为生命中心成分的蛋白质是遗传物质,理由是蛋白质一方面对于生命是极其重要的,另一方面蛋白质不仅有二十种基本组成单位,而且形状和大小多样。简单地说,蛋白质是复杂的,这正是作为遗传物质的必
下列情形中,应认定为自首的有()。
McDonald’s,Greggs,KFCandSubwayaretodaynamedasthemostlitteredbrandsinEnglandasKeepBritainTidy【C1】________fast-f
WhatisthetallestmountainonEarth?Mostschoolchildrenwillsaytheansweris【C1】______neartheborderbetweenNepalandTi
Whathappensifyoureleasetheodoroflavenderintoarestaurant?Incaseof【M1】______asmallshopinFrance,atleast
最新回复
(
0
)