首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,1]上连续,且f(x)非负,试证:至少存在一点ξ∈(0,1),使得 ξf(ξ)=∫ξ1f(x)dx.
设f(x)在[0,1]上连续,且f(x)非负,试证:至少存在一点ξ∈(0,1),使得 ξf(ξ)=∫ξ1f(x)dx.
admin
2017-07-26
43
问题
设f(x)在[0,1]上连续,且f(x)非负,试证:至少存在一点ξ∈(0,1),使得
ξf(ξ)=∫
ξ
1
f(x)dx.
选项
答案
令F(x)=x∫
1
x
f(t)dt,则F(x)在[0,1]上连续,在(0,1)内可导,且F(0)=F(1)=1.∫
1
1
f(t)dt=0.由洛尔定理,存在ξ∈(0,1),使F’(ξ)=0,即∫
1
ξ
(t)dt+ξf(ξ)=0,故ξf(ξ)—∫
ξ
1
f(x)dx=0.
解析
欲证ξf(ξ)=∫
ξ
1
f(x)dx→xf(x)=∫
x
1
f(t)dt,
如作辅助函数F(x)=xf(x)一∫
x
1
f(t)dt,则
F(0)=0f(0)一∫
0
1
f(t)出≤0, F(1)=1.f(1)一∫
1
1
f(t)dt=f(1)≥0,
难以验证F(x)在[0,1]上有F(0)<0,F(1)>0.于是,可作辅助函数F(x),使得
F’(x)=xf(x)一∫
x
1
f(t)dt,
即 F’(x)=[x∫
1
x
f(t)dt]’,
即 F(x)=x∫
1
x
f(t)dt,
再用洛尔定理证明.
转载请注明原文地址:https://kaotiyun.com/show/vuH4777K
0
考研数学三
相关试题推荐
设A为3阶矩阵,α。,α为A的分别属于特征值-1,1的特征向量,向量α满足Aα3=α2+α3,(I)证明α1,α2,α3线性无关;(Ⅱ)令P=(α11,α2,α3),求P-1AP.
已知A是3阶矩阵,A*是A的伴随矩阵,如果矩阵A的特征值是1,2,3,那么矩阵(A*)*的最大特征值是__________.
下列各题中均假定fˊ(x。)存在,按照导数定义观察下列极限,指出A表示什么:
已知线性方程Ax=β的增广矩阵可化为且方程组有无穷多解,则参数A的取值必须满足().
确定常数a,使向量组α1=(1,1,a)T,α2=(1,n,1)T,α3=(a,1,1)T可由向量组β1=(1,l,a)T,β2=(-2,a,4)T,β3=(-2,a,a)T线性表示,但向量组β1,β2,β3不能由向量组α1,α2,α3线性表示.
试用Mathematica求出下列函数的导数:(1)y=sinx3;(2)y=arctan(1nx);(3)y=(1+1/x)x;(4)y=2xf(x2).
设函数f(x)在[a,b]上满足a≤f(x)≤b,|fˊ(x)|≤q<1,令un=f(un-1),n=1,2,3,…,uo∈[a,b],证明:
设二次型f(x1,x2,x3)=x12+x22+x32一2x1x2一2x1x4+2ax2x3(a<0)通过正交变换化为标准形2y12+2y22+by32.(I)求常数a,b;(Ⅱ)求正交变换矩阵;(Ⅲ)当|X|=1时,求二次
设y’=arctan(x一1)2,y(0)=0,求∫01y(x)dx.
证明:当x>0时,arctanx+。
随机试题
型式评价为什么要求申请单位提交被政府计量行政部门受理,并委托进行型式评价的《计量器具型式批准申请书》?
上述各项中属于医生违背有利原则的是上述各项中属于医生违背尊重原则的是
(2008年)缓坡明渠中的均匀流是()。
()是国家强制发行和流通的不能兑现的货币符号。
企业将应收未收的货款转作对购货单位的投资时,引起会计要素有关项目的变化是()。
以下贷款方式中,银行不用承担贷款风险的有()。
尧、舜、禹是继炎帝、黄帝之后通过()担任首领的。
1
Therearemorethan300millionofusintheU.S.,andsometimesitseemslikewe’reallfriendsonFacebook.Butthesadtruth
Whomightthespeakerbe?
最新回复
(
0
)