首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量组α1,…,αr线性无关,又 β1=a11α1+a21α2+…+ar1αr β2=a12α1+a22α2+…+ar2αr …… βr=a1rα1+a2rα2+…+arrαr 记矩阵A=(aij)r×r,证明:β1,β2
设向量组α1,…,αr线性无关,又 β1=a11α1+a21α2+…+ar1αr β2=a12α1+a22α2+…+ar2αr …… βr=a1rα1+a2rα2+…+arrαr 记矩阵A=(aij)r×r,证明:β1,β2
admin
2018-07-31
25
问题
设向量组α
1
,…,α
r
线性无关,又
β
1
=a
11
α
1
+a
21
α
2
+…+a
r1
α
r
β
2
=a
12
α
1
+a
22
α
2
+…+a
r2
α
r
……
β
r
=a
1r
α
1
+a
2r
α
2
+…+a
rr
α
r
记矩阵A=(a
ij
)
r×r
,证明:β
1
,β
2
,…,β
r
线性无关的充分必要条件是A的行列式|A|≠0.
选项
答案
不妨设α
j
及β
j
均为n维列向量(j=1,2,…,r),则题设线性表示式可写成矩阵形式 [β
1
β
2
… β
r
]=[α
1
α
2
… α
r
]A 或 B=PA,…(*) 其中B=[β
1
β
2
… β
r
]及P=[α
1
α
2
… α
r
]均为n×r矩阵,且矩阵P的列向量组线性无关.于是可证两个齐次线性方程组Bx=0与Ax=0同解;若X满足Ax=0,两端左乘P并利用PA=B,得Bx=0;若x满足Bx=0,即PAx=0,或P(Ax)=0,因P的列向量组线性无关,得Ax=0,所以,Ax=0与Bx=0同解,→它们的基础解系所含向量个数相等,即r—r(A)=r—r(B),→r(A)=r(B).所以,向量组β
1
,…,β
r
线性无关→r[β
1
β
2
… β
r
]=r→r(A)=r→|A|≠0.
解析
转载请注明原文地址:https://kaotiyun.com/show/w5g4777K
0
考研数学一
相关试题推荐
设f(x)在[a,b]上连续可导,且f(a)=f(b)=0.证明:|f(x)|≤∫ab|f’(x)|dx(a<x<b).
设f(x)在R上是以T为周期的连续奇函数,则下列函数中不是周期函数的是().
三元二次型f=XTAX经过正交变换化为标准形f=y12+y22—2y32,且A*+2E的非零特征值对应的特征向量为α=,求此二次型.
设A为n阶正定矩阵.证明:对任意的可逆矩阵P,PTAP为正定矩阵.
设A为m×n阶实矩阵,且r(A)=n.证明:ATA的特征值全大于零.
设A是三阶矩阵,α1,α2,α3为三个三维线性无关的列向量,且满足Aα1=α2+α3,Aα2=α1+α3,Aα3=α1+α2.(1)求矩阵A的特征值;(2)判断矩阵A可否对角化.
设A,B分别为m×n及n×s阶矩阵,且AB=O.证明:r(A)+r(B)≤n.
设A,B为同阶方阵。(Ⅰ)若A,B相似,证明A,B的特征多项式相等;(Ⅱ)举一个二阶方阵的例子说明(Ⅰ)的逆命题不成立;(Ⅲ)当A,B均为实对称矩阵时,证明(Ⅰ)的逆命题成立。
设A=(aij)为n阶方阵,证明:对任意的n维列向量X,都有XTAX=0,A为反对称矩阵.
随机试题
一份哈佛商学院的报告表明,公司管理和薪资的变化使美国公司管理人员采取一种关注股价和短期业绩的管理方式。当一家公司聚焦短期利润和股价,管理层可能会创新,但这些创新都与提高效率和降低成本有关。相反,能够带来附加值的创新,特别是具有变革意义的创新,则很可能被认为
哌替啶不同于吗啡的临床用途为( )。
医疗保健机构及卫生防疫机构发现传染病时,应当及时采取的控制措施中不包括
增长型行业的运动状态一般与经济周期相关。( )
下列关于认购权证持有人的权利的说法中,正确的是()。Ⅰ.有参与公司股东大会的权利Ⅱ.有参与公司分红的权利Ⅲ.有在约定时间按约定价格购入股票的权利Ⅳ.有放弃行权的权利
阅读下列文字,完成43-45题:线性和非线性本来是数学名词,所谓线性是指量与量之间的正比关系,用直角坐标形象地画出来,是一根直线,在线性系统中,部分之和等于整体,描述线性系统的方程遵从叠加原理,即方程的不同解加起来仍然是解,非线性则指整体不等于部分
设A=,B=,且|A|=4,则|B|=().
SQL语言的GRANT和REVOKE语句主要用来维护数据库的()。
ComingHome:LifeAfterStudyingAbroadManyreturneeswhohavestudiedabroadmaysufferre-entrycultureshockwhentheygo
Joy:ASubjectSchoolsLackBecomingeducatedshouldnotrequiregivinguppleasure.
最新回复
(
0
)