首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量组α1,…,αr线性无关,又 β1=a11α1+a21α2+…+ar1αr β2=a12α1+a22α2+…+ar2αr …… βr=a1rα1+a2rα2+…+arrαr 记矩阵A=(aij)r×r,证明:β1,β2
设向量组α1,…,αr线性无关,又 β1=a11α1+a21α2+…+ar1αr β2=a12α1+a22α2+…+ar2αr …… βr=a1rα1+a2rα2+…+arrαr 记矩阵A=(aij)r×r,证明:β1,β2
admin
2018-07-31
51
问题
设向量组α
1
,…,α
r
线性无关,又
β
1
=a
11
α
1
+a
21
α
2
+…+a
r1
α
r
β
2
=a
12
α
1
+a
22
α
2
+…+a
r2
α
r
……
β
r
=a
1r
α
1
+a
2r
α
2
+…+a
rr
α
r
记矩阵A=(a
ij
)
r×r
,证明:β
1
,β
2
,…,β
r
线性无关的充分必要条件是A的行列式|A|≠0.
选项
答案
不妨设α
j
及β
j
均为n维列向量(j=1,2,…,r),则题设线性表示式可写成矩阵形式 [β
1
β
2
… β
r
]=[α
1
α
2
… α
r
]A 或 B=PA,…(*) 其中B=[β
1
β
2
… β
r
]及P=[α
1
α
2
… α
r
]均为n×r矩阵,且矩阵P的列向量组线性无关.于是可证两个齐次线性方程组Bx=0与Ax=0同解;若X满足Ax=0,两端左乘P并利用PA=B,得Bx=0;若x满足Bx=0,即PAx=0,或P(Ax)=0,因P的列向量组线性无关,得Ax=0,所以,Ax=0与Bx=0同解,→它们的基础解系所含向量个数相等,即r—r(A)=r—r(B),→r(A)=r(B).所以,向量组β
1
,…,β
r
线性无关→r[β
1
β
2
… β
r
]=r→r(A)=r→|A|≠0.
解析
转载请注明原文地址:https://kaotiyun.com/show/w5g4777K
0
考研数学一
相关试题推荐
求
设f(x)在(0,+∞)内连续且单调减少.证明: ∫1n+1f(x)dx≤f(k)≤f(1)+∫1nf(x)dx.
设A为三阶矩阵,ξ1,ξ2,ξ3是三维线性无关的列向量,且Aξ1=一ξ1+2ξ2+2ξ3,Aξ2=2ξ1—ξ2—ξ3,Aξ3=2ξ1—2ξ2—ξ3.(1)求矩阵A的全部特征值;(2)求|A*+2E|.
设Y~,求矩阵A可对角化的概率.
某商店经销某种商品,每周进货数量X与顾客对该种商品的需求量Y之间是相互独立的,且都服从[10,20]上的均匀分布.商店每出售一单位商品可获利1000元;若需求量超过了进货量,商店可从其他商店调剂供应,这时每单位商品获利500元,计算此商店经销该种商品每周所
设α,β是n维非零列向量,A=αβT+βαT.证明:r(A)≤2.
二阶常系数非齐次线性微分方程y"一2y’一3y=(2x+1)e-x的特解形式为().
设A=有四个线性无关的特征向量,求A的特征值与特征向量,并求A2010.
证明:若A为n阶方阵,则有|A*|=|(一A)*|(n≥2).
设A=(aij)为n阶方阵,证明:对任意的n维列向量X,都有XTAX=0,A为反对称矩阵.
随机试题
由于纯铜材料比高速钢钻头的传热慢,钻较深孔时,钻头在孔中容易咬住。()
患儿,2岁,诊断为动脉导管未闭。对该患儿做健康指导时,不妥的是
2013年1月19日,荣盛商贸有限责任公司(以下简称荣盛公司)从龙腾公司购进一批货物,同时向龙腾公司开具一张支票,支票上印明“现金”字样,用于货款结算。荣盛公司开具支票时,将付款人名称填写为“荣成商贸有限责任公司”,出票日期填写为“贰零壹叁年壹月
按照《反洗钱法》的规定,金融机构的客户的交易记录,自交易记账之日起至少保存()年。
请从氧化铁、铜、氢氧化钠、碳、氧气、盐酸六种物质的相关知识中以物质分类为题眼,编写一道单项选择题并作答(六种物质可不都用),再提出你对选择题出题方面的建议。
观察时,要求幼儿能比较全面细致观察物体形状、大小、结构、颜色和物体动态。这种要求主要针对的年龄班是()
•Lookatthestatementsbelowandtheinformationonrelationshipbankingontheoppositepage.•Whichsection(A,B,C,orD)d
Thispartistotestyourabilitytodopracticalwriting.Youarerequiredtowritealetteraccordingtothefollowinginforma
Forthispart,youareallowed30minutestowriteashortessayentitledMyViewontheElectricAutomobile.Youshouldwritea
Manychildrenfirst【S1】______thevalueofmoneyby【S2】______anallowance,(零用钱).Thepurposeisto【S3】______childrenlearnfrome
最新回复
(
0
)