首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量组α1,…,αr线性无关,又 β1=a11α1+a21α2+…+ar1αr β2=a12α1+a22α2+…+ar2αr …… βr=a1rα1+a2rα2+…+arrαr 记矩阵A=(aij)r×r,证明:β1,β2
设向量组α1,…,αr线性无关,又 β1=a11α1+a21α2+…+ar1αr β2=a12α1+a22α2+…+ar2αr …… βr=a1rα1+a2rα2+…+arrαr 记矩阵A=(aij)r×r,证明:β1,β2
admin
2018-07-31
45
问题
设向量组α
1
,…,α
r
线性无关,又
β
1
=a
11
α
1
+a
21
α
2
+…+a
r1
α
r
β
2
=a
12
α
1
+a
22
α
2
+…+a
r2
α
r
……
β
r
=a
1r
α
1
+a
2r
α
2
+…+a
rr
α
r
记矩阵A=(a
ij
)
r×r
,证明:β
1
,β
2
,…,β
r
线性无关的充分必要条件是A的行列式|A|≠0.
选项
答案
不妨设α
j
及β
j
均为n维列向量(j=1,2,…,r),则题设线性表示式可写成矩阵形式 [β
1
β
2
… β
r
]=[α
1
α
2
… α
r
]A 或 B=PA,…(*) 其中B=[β
1
β
2
… β
r
]及P=[α
1
α
2
… α
r
]均为n×r矩阵,且矩阵P的列向量组线性无关.于是可证两个齐次线性方程组Bx=0与Ax=0同解;若X满足Ax=0,两端左乘P并利用PA=B,得Bx=0;若x满足Bx=0,即PAx=0,或P(Ax)=0,因P的列向量组线性无关,得Ax=0,所以,Ax=0与Bx=0同解,→它们的基础解系所含向量个数相等,即r—r(A)=r—r(B),→r(A)=r(B).所以,向量组β
1
,…,β
r
线性无关→r[β
1
β
2
… β
r
]=r→r(A)=r→|A|≠0.
解析
转载请注明原文地址:https://kaotiyun.com/show/w5g4777K
0
考研数学一
相关试题推荐
设A,B为n阶正定矩阵.证明:A+B为正定矩阵.
设二维非零向量α不是二阶方阵A的特征向量.(1)证明α,Aα线性无关;(2)若A2α+Aα一6α=0,求A的特征值,讨论A可否对角化;
设Y~,求矩阵A可对角化的概率.
若(X,Y)服从二维正态分布,则①X,Y一定相互独立;②若ρXY=0,则X,Y一定相互独立;③X和Y都服从一维正态分布;④X,Y的任一线性组合服从一维正态分布.上述几种说法中正确的是().
设A为n阶非奇异矩阵,α是n维列向量,b为常数,P=(1)计算PQ;(2)证明PQ可逆的充分必要条件是αTA-1α≠b.
设A=(aij)n×n是非零矩阵,且|A|中每个元素aij与其代数余子式Aij相等.证明:|A|≠0.
设矩阵A=为A*对应的特征向量.(1)求a,b及α对应的A*的特征值,(2)判断A可否对角化.
设A是n阶方阵,A+E可逆,且f(A)=(E—A)(E+A)-1.证明:(1)[E+f(A)](E+A)=2E;(2)f[f(A)]=A.
设方阵A1与B1合同,A2与B2合同,证明:合同。
随机试题
一国发生通货膨胀时,银行创造条件把活期存款货币转化为定期存款货币的目的是()。
词是诗歌的一种,最初是配合音乐来歌唱的;因其句子长短不一,也称“________”。
放射性131I治疗甲亢,应至少观察多长时间才能确定是否进行第二次治疗
甲房地产开发公司(以下简称甲公司)开发了一个住宅小区。为促进住宅销售,甲公司制作了功能楼书和形象楼书,并租用路边广告牌进行宣传。李某希望购买一套距离上班地点较近的商品住房,由于该住宅小区四周交通便利,李某与甲公司签订了《房地产认购协议书》,拟购买一套建筑面
最终结算是指(),对承包商完成全部工作价值的详细结算,以及根据合同条件对应付给承包商的其他费用进行核实,确定合同的最终价格。
对于设备的有形和无形磨损,下列说法错误的是()。
班主任在班级管理中的领导影响力主要表现在()。
Theschoolhasmadeitarulethatnostudentshalltakeanillegalvehicle_____________aschoolbus.
根据以下资料,回答下列问题。2017年4月,B市实现外贸进出口总额2532.10亿元,比去年同月增长17.8%。其中,出口989.98亿元.增长7.6%;进口1542.12亿元,增长25.4%。1--4月,本市累计实现外贸进出口总额10043.66亿元,
在试误学习的过程中,学习者对刺激情境作出特定的反应之后能够获得满意的结果时,联结力量就会增加,这符合的学习规律是
最新回复
(
0
)