首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[a,b]上二阶可导,且f″(x)>0,取xi∈[a,b](i=1,2,…,n)及ki>0(i=1,2,…,n)且满足k1+k2+…+kn=1.证明: f(k1x1+k2x2+…+knxn)≤k1f(x1)+k2f(x2)+…+knf(xn).
设f(x)在[a,b]上二阶可导,且f″(x)>0,取xi∈[a,b](i=1,2,…,n)及ki>0(i=1,2,…,n)且满足k1+k2+…+kn=1.证明: f(k1x1+k2x2+…+knxn)≤k1f(x1)+k2f(x2)+…+knf(xn).
admin
2019-09-27
45
问题
设f(x)在[a,b]上二阶可导,且f″(x)>0,取x
i
∈[a,b](i=1,2,…,n)及k
i
>0(i=1,2,…,n)且满足k
1
+k
2
+…+k
n
=1.证明:
f(k
1
x
1
+k
2
x
2
+…+k
n
x
n
)≤k
1
f(x
1
)+k
2
f(x
2
)+…+k
n
f(x
n
).
选项
答案
令x
0
=k
1
x
1
+k
2
x
2
+…+k
n
x
n
,显然x
0
∈[a,b]. 因为f″(x)>0,所以f(x)≥f(x
0
)+f′(x
0
)(x-x
0
), 分别取x=x
i
(i=1,2,…,n),得 [*] 由k
i
>0(i=1,2,…,n),上述各式分别乘以k
i
(i=1,2,…,n),得 [*] 将上述各式分别相加,得f(x
0
)≤k
1
f(x
1
)+k
2
f(x
2
)+…+k
n
f(x
n
),即 f(k
1
x
1
+k
2
x
2
+…+k
n
x
n
)≤k
1
f(x
1
)+k
2
f(x
2
)+…+k
n
f(x
n
).
解析
转载请注明原文地址:https://kaotiyun.com/show/wGS4777K
0
考研数学一
相关试题推荐
从装有1个白球、2个黑球的罐子里有放回地取球,记这样连续取5次得样本X1,X2,X3,X4,X5.记Y=X1+X2+…+X5,求:,S2分别为样本X1,X2,…,X5的均值与方差).
设随机变量X与Y相互独立且分别服从正态分布N(μ,σ2)与N(μ,2σ2),其中σ是未知参数且σ>0,设Z=X—Y,(Ⅰ)求Z的概率密度f(z,σ2);(Ⅱ)设z1,z2,…,zn为来自总体Z的简单随机样本,求σ2的最大似然估计量.
设(I),α1,α2,α3,α4为四元非齐次线性方程组BX=b的四个解,其中α1=.(Ⅰ)与(Ⅱ)是否有公共的非零解?若有公共解求出其公共解.
已知三阶矩阵A和三维向量x,使得x,Ax,A2x线性无关,且满足A3x=3Ax-2A2x。(Ⅰ)记P=(x,Ax,A2x)。求三阶矩阵B,使A=PBP-1;(Ⅱ)计算行列式|A+E|。
作下列函数的图形:
计算曲面积分(z2+x)dydz—zdxdy,其中∑是旋转抛物面z=(x2+y2)介于平面z=0及z=2之间的部分的下侧。
设曲线y=xn在点(1,1)处的切线交x轴于点(ξn,0),求。
求曲面积分I=x2dydz+y2dzdx+z2dxdy,其中s是长方体Ω:0≤x≤a,0≤y≤b,0≤z≤c的表面外侧.
空间曲线,在xOy平面上的投影在x≥0处围成的区域记为D,则=___________.
随机试题
纤维支气管镜检查能直视气管及各级支气管。()
四君子汤、补中益气汤、归脾汤三方共有的药物是
男性,35岁,查体胸部X片发现右肺上叶外缘不规则阴影,CT检查证实右上肺叶前段有一直径1.5cm分叶状肿物,但纤维支气管镜及气管内容物刷检均未发现肿瘤证据。进一步应采取
淋巴细胞毒试验阳性结果是指死细胞数量高于
“元神之府”指的是
下列选项正确的是()。乙行使对己的抵押权的撤销权,则()。
中国“四大名绣”中,粤绣的代表作是()。
A2一B2=(A+B)(A—B)的充分必要条件是________.
•Readthearticlebelowabouthowtoreadannualreportandthequestionsontheoppositepage.•Foreachquestion13-18,mark
Japanesescientistsareatlastactivelyenteringthedebateoverthegovernment’scontroversialreformplan,whichtargetsnot
最新回复
(
0
)