首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2004年] 设f(x)=∣x(1一x)∣,则( ).
[2004年] 设f(x)=∣x(1一x)∣,则( ).
admin
2021-01-19
39
问题
[2004年] 设f(x)=∣x(1一x)∣,则( ).
选项
A、x=0是f(x)的极值点,但点(0,0)不是曲线y=f(x)的拐点
B、x=0不是f(x)的极值点,但点(0,0)是曲线y=f(x)的拐点
C、x=0是f(x)的极值点,且点(0,0)是曲线y=f(x)的拐点
D、x=0不是f(x)的极值点,点(0,0)也不是曲线y=f(x)的拐点
答案
C
解析
判别分段函数的极值点与拐点,只需讨论x=0的两侧f′(x),f″(x)的符号.
解一 由f(x)=
,知f(x)在x=0处不可导.但x<0时,
f′(x)=(一x+x
2
)′=一l+2x,f″(x)=2;x>0时,f′(x)=(x一x
2
)′=l-2x,
f″(x)=一2.因而f′(x)及f″(x)在x=0的左、右两侧改变符号,故x=0既是f(x)的极值点,点(0,0)也是曲线f(x)的拐点.仅(C)入选.
解二 先作出y=x(1一x)=一x
2
+x=一(x一1/2)
2
+1/4(0≤x≤1)的图形,再对x<0及x>1分别作出y=x(1-x)=一(x一1/2)+1/4取正值的图形,如图1.2.5.7所示.
在x=0附近,函数f(x)左减右增,则f(0)为极小值,且在x=1附近函数f(x)也是左减右增,因而f(1)也为极小值.
又在x=0的左侧,曲线y=f(x)为凹,右侧为凸,故点(0,0)为拐点,且在,x=1的左侧曲线y=f(x)为凸,右侧为凹,故点(1,f(1)=0)也为曲线y=f(x)的拐点.仅(C)入选.
转载请注明原文地址:https://kaotiyun.com/show/wR84777K
0
考研数学二
相关试题推荐
设F(x)为f(x)的原函数,且当x≥0时,f(x)F(x)=,又F(0)=1,F(x)>0,求f(x).
求过点(2,一3,1)和直线的平面方程.
设α1,α2,α3,α4线性无关,β1=2α1+α3+α4,β2=2α1+α3+α4,β3=α2-α4,β4=α3+α4,β5=α2+α3.(1)求r(β1,β2,β3,β4,β5);(2)求β1,β2,β3,β4,β5的一个最大无关组
求极限
设A为n阶方阵,k为正整数,线性方程组AkX=0有解向量α,但Ak-1α≠0.证明:向量组α,Aα,…,Ak-1α线性无关.
设f(x)是区间[0,+∞)上具有连续导数的单调增加函数,且f(0)=1。对任意的t∈[0,+∞),直线x=0,x=t,曲线y=f(x)以及x轴所围成的曲边梯形绕x轴旋转一周得一旋转体。若该旋转体的侧面积在数值上等于其体积的2倍,求函数f(x)的表达式。
设f(x)为连续函数,试证明:F(x)的奇偶性正好与f(x)的奇偶性相反;
已知函数f(x)具有任意阶导数,且f’(x)=f2(x),则当n为大于2的正整数时,f(x)的n阶导数是()
(1994年)设函数f(χ)在闭区间[a,b]上连续,且f(χ)>0,则方程∫aχf(t)dt+∫bχdt=0在开区间(a,b)内的根有
(1991年)设y=ln(1+3-χ),则dy=_______.
随机试题
甲贩运假烟,驾车路过某检查站时,被工商执法部门拦住检查。检查人员乙正登车检查时,甲突然发动汽车夺路而逃。乙抓住汽车车门的把手不放,甲为摆脱乙,在疾驶时突然急刹车,导致乙头部着地身亡。甲对乙死亡的心理态度属于下列哪一种?()
Aplantthathasbeenslightlyunderwateredsothatitdroopsstrikesterrorintotheheartofitsnewowner.
壁细胞的结构特征是()
[2005年,第38题]原子序数为24的元素,其原子外层电子排布式应是()。
影响级差地租的主要因素有()方面。
全面结算会员期货公司应建立并执行对非结算会员的()制度。
等响曲线中的情感阈限是指
a>b(1)a,b为实数,且a2>b2(2)a,b为实数,且
设线性齐次方程组Ax=0.为在线性方程组(*)的基础上增添一个方程2x1+ax2一4x3+bx4=0,得线性齐次方程组Bx=0为问a,b满足什么条件时,方程组(*)和(**)是同解方程组.
Wheredoesthisconversationtakeplace?
最新回复
(
0
)