首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量组a1,a2,…,am线性相关,且α1≠0,证明存在某个向量ak(2≤k≤m),使ak能由a1,a2,…,ak—1线性表示。
设向量组a1,a2,…,am线性相关,且α1≠0,证明存在某个向量ak(2≤k≤m),使ak能由a1,a2,…,ak—1线性表示。
admin
2019-06-28
54
问题
设向量组a
1
,a
2
,…,a
m
线性相关,且α
1
≠0,证明存在某个向量a
k
(2≤k≤m),使a
k
能由a
1
,a
2
,…,a
k—1
线性表示。
选项
答案
因为向量组a
1
,a
2
,…,a
m
线性相关,由定义知,存在不全为零的数λ
1
,λ
2
,…,λ
m
,使λ
1
a
1
+λ
2
a
2
+…+λ
m
a
m
=0。 因λ
1
,λ
2
,…,λ
m
不全为零,所以必存在k,使得λ
k
≠0,且λ
k+1
=…=λ
m
=0。 当k=1时,代入上式有λ
1
a
1
=0。又因为a
1
≠0,所以λ
1
=0,与假设矛盾,故k≠1。 当λ
k
≠0且k≥2时,有 [*] 因此向量a
k
能由a
1
,a
2
,…,a
k—1
线性表示。
解析
转载请注明原文地址:https://kaotiyun.com/show/MpV4777K
0
考研数学二
相关试题推荐
设A是n阶矩阵,P是n阶可逆矩阵,n维列向量α是矩阵A的属于特征值λ的特征向量,那么在下列矩阵中①A2;②P-1AP;③AT;④E一A。α肯定是其特征向量的矩阵个数为()
设二次型f(x1,x2,x3)=x12+x22+x32一2x1x2—2x1x3+2ax2x3通过正交变换化为标准形2y12+2y22+by32。求f在xTx=3下的最大值。
设矩阵A与B相似,且,求可逆矩阵P,使P-1AP=B。
设向量α=(a1,a2,…,an)T,β=(b1,b2,…,bn)T都是非零向量,且满足条件αTβ=0,记n阶矩阵A=αβT。求矩阵A的特征值和特征向量。
设x为三维单位列向量,E为三阶单位矩阵,则矩阵E—xxT的秩为_________。
设f(x)有连续的导数,f(0)=0且f’(0)=b,若函数F(x)=在x=0处连续,则常数A=_______.
设xOy平面上有正方形D={(x,y)|0≤x≤1,0≤y≤1}及直线l:x+y=t(t≥0)。若S(t)表示正方形D位于直线l左下方部分的面积,试求∫0xS(t)dt(x≥0)。
设L是一条平面曲线,其上任意一点P(x,y)(x>0)到坐标原点的距离,恒等于该点处的切线在y轴上的截距,且L经过点(1/2,0)。(Ⅰ)试求曲线L的方程;(Ⅱ)求L位于第一象限部分的一条切线,使该切线与L以及两坐标轴所围图形面积最小。
设直线y=kχ与曲线y=所围平面图形为D1,它们与直线χ=1围成平面图形为D2.(1)求k,使得D1与D2分别绕χ轴旋转一周成旋转体体积V1与V2之和最小,并求最小值;(2)求此时的D1+D2.
设函数f(x)=若反常积分∫1+∞f(x)dx收敛,则()
随机试题
放置宫内节育器应注意的事项不包括
用于从物理地址到IP地址的映射需要()协议。
政策规划中的政府主导主要体现为()
治疗特发性血小板减少性紫癜之气不摄血证首选方药是
A、通心络胶囊B、元胡止痛片C、人参再造丸D、益心舒胶囊E、冠心苏合滴丸气虚血瘀所致的胃痛、胁痛,宜选用
Cargo-handlingexpensesonatime-charteringwillalwaysremaintheshipowner"sresponsibility.
下列各项不属于不动产的相邻各方处理相邻关系时应当遵循的原则的是( )。
下列人员中,应当在发行保荐书上签字的是()。
唯物辩证法的实质和核心是()。
【B1】【B12】
最新回复
(
0
)