首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(1)设f(x)是以T为周期的连续函数,试证明:∫0xf(t)dt可以表示为一个以T为周期的函数ψ(x)与kx之和,并求出此常数k; (2)求(1)中的 (3)以[x]表示不超过x的最大整数,g(x)=x一[x],求
(1)设f(x)是以T为周期的连续函数,试证明:∫0xf(t)dt可以表示为一个以T为周期的函数ψ(x)与kx之和,并求出此常数k; (2)求(1)中的 (3)以[x]表示不超过x的最大整数,g(x)=x一[x],求
admin
2019-06-28
54
问题
(1)设f(x)是以T为周期的连续函数,试证明:∫
0
x
f(t)dt可以表示为一个以T为周期的函数ψ(x)与kx之和,并求出此常数k;
(2)求(1)中的
(3)以[x]表示不超过x的最大整数,g(x)=x一[x],求
选项
答案
(1)证明能取到常数k使∫
0
x
f(t)dt一kx为周期T即可.(1)得到的表达式去求[*] 即可得(2).但请读者注意,一般不能用洛必达法则求此极限,除非f(x)恒为常数.对于 (3),由于g(x)不连续,如果要借用(1)的结论,需要更深一层的结论(见下面的[注]).由于g(x)可以具体写出它的分段表达式,故可直接积分再用夹逼定理即得. (1)令φ(x)=∫
0
x
f(t)dt—kx,考察 ψ(x+T)一ψ(x)=∫
0
x+T
f(t)dt一k(x+T)一∫
0
x
f(t)dt+kx =∫
0
T
f(t)dt+∫
T
x+T
f(t)dt—∫
0
x
f(t)dt—kT. 对于其中的第二个积分,作积分变量代换,命t=u+T,有 ∫
T
x+T
f(t)dt=∫
0
x
f(u+T)du=∫
0
x
f(u)du, ① 于是 ψ(x+T)-ψ(x)=∫
0
T
f(t)dt一kT 可见,ψ(x)为T周期函数的充要条件是[*] 即证明了∫
0
x
f(t)dt可以表示成 [*] 其中ψ(x)为某一周期T的函数. (2)由(1),[*] 因ψ(x)为连续的周期函数,故ψ(x)在(一∞,+∞)上有界,从而 [*] (3)设n≤x<n+1, [*] 由n≤x<n+1,有 [*] 由夹逼定理知 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/ViV4777K
0
考研数学二
相关试题推荐
计算二重积分|x2+y2一1|dσ,其中D={(x,y)|0≤x≤1,0≤y≤1}。
求极限。
设α,β为三维列向量,矩阵A=ααT+ββT,其中αT,βT分别为α,β的转置。证明:r(A)≤2。
已知三阶矩阵A的行列式|A|=一3,A*为A的伴随矩阵,AT为A的转置矩阵。如果kA的逆矩阵为A*一|AT|A-1,则k=________。
设y=ex(asinx+bcosx)(a,b为任意常数)为某二阶常系数线性齐次微分方程的通解,则该方程为_________。
求函数f(x)=,所有的间断点及其类型。
已知曲线L的方程。过点(一1,0)引L的切线,求切点(x0,y0),并写出切线的方程;
设三阶矩阵A的特征值λ1=1,λ2=2,λ3=3对应的特征向量依次为α1=(1,l,1)T,α2=(1,2,4)T,α3=(1,3,9)T。将向量β=(1,1,3)T用α1,α2,α3线性表示;
设曲线y=lnx与y=k相切,则公共切线为_______.
“对任意给定的ε∈(0,1),总存在正整数N,当n≥N时,恒有|xn-a|≤2ε”是数列{xn}收敛于a的()
随机试题
著作权是指作者或著作权人对()()()。
省、自治区、直辖市的代表名额基数为350名,省、自治区每15万人可以增加1名代表,直辖市每2.5万人可以增加1名代表;但是代表总名额不得超过_________。
业主可向承包商进行索赔的情形包括( )。
根据《汽车金融公司管理办法》,汽车金融公司可从事的业务有()。
各种贷款的审批权限,根据各种贷款办法的规定和各省、自治区、直辖市、计划单列市分行的规定办理。各经办行内部的审批程序由()规定。
下列属于宏观调控措施的有()。
宪法与法律的最主要区别是()。
阅读下文。回答106—110题。何谓文化?向来狭义的解释,只指学术技艺而言,其为不当,自无待论。说得广的,又把一切人为的事都包括于文化之中,然则动物何以没有文化呢?须知文化正是人之所以异于动物的。其异点安在呢?凡动物,多能对外界的刺激而起反应,亦多
A、Helivedasimpleandlonelylife.B、Heusuallydidnotwearanything.C、Hedivorcedandnevermarriedagain.D、Hetraveledwi
LoveAroundtheWorldItwasanunsettingnightattheAfricanbarandRichardBlaine,37,wasespeciallynervous.Clients
最新回复
(
0
)