首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知函数z=f(x,y)的全微分出=2xdx — 2ydy,并且f(1,1)=2。求f(x,y)在椭圆域D={(x,y)|x2+≤1}上的最大值和最小值。
已知函数z=f(x,y)的全微分出=2xdx — 2ydy,并且f(1,1)=2。求f(x,y)在椭圆域D={(x,y)|x2+≤1}上的最大值和最小值。
admin
2017-12-29
78
问题
已知函数z=f(x,y)的全微分出=2xdx — 2ydy,并且f(1,1)=2。求f(x,y)在椭圆域D={(x,y)|x
2
+
≤1}上的最大值和最小值。
选项
答案
根据题意可知[*]=— 2y,于是f(x,y)=x
2
+C(y),且 C’(y)=—2y,因此有C(y)=— y
2
+C,由f(1,1)=2,得C=2,故 f(x,y)=x
2
一y
2
+2。 令[*]=0得可能极值点为x=0,y=0。且 [*] △=B
2
—AC =4>0,所以点(0,0)不是极值点,也不可能是最值点。 下面讨论其边界曲线x
2
+[*]=1上的情形,令拉格朗日函数为 [*] 得可能极值点x=0,y=2,λ=4;x =0,y=—2,λ=4;x=1,y=0,λ=—1;x =—1,y=0,λ=—1。 将其分别代入f(x,y)得,f(0,±2)=一2f(±1,0)=3,因此z=f(x,y)在区域D={(x,y)|x
2
+[*]≤1}内的最大值为3,最小值为—2。
解析
转载请注明原文地址:https://kaotiyun.com/show/wUX4777K
0
考研数学三
相关试题推荐
设A是n阶矩阵,满足A2=A,且r(A)=r(0<r≤n).证明:其中Er是,r阶单位阵.
已知A,B是三阶方阵,A≠0,AB=0证明:B不可逆.
设有两个非零矩阵A=[α1,α2,…,αn]T,B=[b1,b2,…,bn]T.求矩阵ABT的秩r(ABT);
设有4阶方阵A满足条件|3E+A|=0,AAT=2E,|A|<0,其中E是4阶单位阵.求方阵A的伴随矩阵A*的一个特征值.
微分方程y"一7y’=(x一1)2由待定系数法确定的特解形式(系数的值不必求出)是________.
设函数y(x)(x≥0)二阶可导且y’(x)>0,y(0)=1.过曲线y=y(x)上任意一点P(x,y)作该曲线的切线及x轴的垂线,上述两直线与x轴所围成的三角形的面积记为S1,区间[0,x]上以y=y(x)为曲边的曲边梯形面积记为S2,并设2S1~S2恒
设需求函数为p=a一bQ,总成本函数为C=一7Q2+100Q+50,其中a,b>0为待定的常数,已知当边际收益MR=67,且需求价格弹性时,总利润是最大的,求总利润最大时的产量,并确定a,b的值.
设p(x),q(x)与f(x)均为连续函数,f(x)≠0.设y1(x),y2(x)与y3(x)是二阶非齐次线性方程y"+p(x)y’+q(x)y=f(x)①的3个解,且则式①的通解为________.
设f(x)有二阶连续导数,且(x0,f(x0))为曲线y=f(x)的拐点,则=()
y=e2x+(1+x)ex是二阶常系数线性微分方程yˊˊ+ayˊ+βy=rex的一个特解,则α2+β2+r2=________.
随机试题
血细胞比容
A.阴阳相互交感B.阴阳对立制约C.阴阳互根互用D.阴阳相互转化
施工进度计划调整的组织措施不包括()。
根据《首次公开发行股票并上市管理办法》,如果近3个会计年度营业收入累计超过人民币3亿元,发行人应符合的会计指标要求是()。
在我国,证券交易所会员享有()等权利。
对于性格的特征差异,心理学家一般从以下方面进行分析()
线体主义三人联展参展的三位画家选择“线”作为工具,然而他们却面临着相同的尴尬。在现代中国的画廊体系中,普遍存在一种意见—线描缺乏“绘画性”,只有过渡丰富的油画等才能真正登堂入室。(语料来源:《大众日报》,2011年11月15日)
常春藤通常指美国东部的八所大学。常春藤一词一直以来是美国名校的代名词,这八所大学不仅历史悠久、治学严谨,而且教学质量极高。这些学校的毕业生大多成为社会精英,他们中的大多数人年薪超过20万美元,有很多政界领袖来自常春藤,更有为数众多的科学家毕业于常春藤。根据
与封建社会相比,资本主义显示了巨大的历史进步性。但是,从人类社会发展的长河看,资本主义终究要被社会主义所代替。这是因为
Therearemanymedicalproblemsinthemodernsociety.Oneofthemostalarmingmedicalproblemsintheworldisa【21】______dise
最新回复
(
0
)