首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知函数z=f(x,y)的全微分出=2xdx — 2ydy,并且f(1,1)=2。求f(x,y)在椭圆域D={(x,y)|x2+≤1}上的最大值和最小值。
已知函数z=f(x,y)的全微分出=2xdx — 2ydy,并且f(1,1)=2。求f(x,y)在椭圆域D={(x,y)|x2+≤1}上的最大值和最小值。
admin
2017-12-29
61
问题
已知函数z=f(x,y)的全微分出=2xdx — 2ydy,并且f(1,1)=2。求f(x,y)在椭圆域D={(x,y)|x
2
+
≤1}上的最大值和最小值。
选项
答案
根据题意可知[*]=— 2y,于是f(x,y)=x
2
+C(y),且 C’(y)=—2y,因此有C(y)=— y
2
+C,由f(1,1)=2,得C=2,故 f(x,y)=x
2
一y
2
+2。 令[*]=0得可能极值点为x=0,y=0。且 [*] △=B
2
—AC =4>0,所以点(0,0)不是极值点,也不可能是最值点。 下面讨论其边界曲线x
2
+[*]=1上的情形,令拉格朗日函数为 [*] 得可能极值点x=0,y=2,λ=4;x =0,y=—2,λ=4;x=1,y=0,λ=—1;x =—1,y=0,λ=—1。 将其分别代入f(x,y)得,f(0,±2)=一2f(±1,0)=3,因此z=f(x,y)在区域D={(x,y)|x
2
+[*]≤1}内的最大值为3,最小值为—2。
解析
转载请注明原文地址:https://kaotiyun.com/show/wUX4777K
0
考研数学三
相关试题推荐
积分=()
设有4阶方阵A满足条件|3E+A|=0,AAT=2E,|A|<0,其中E是4阶单位阵.求方阵A的伴随矩阵A*的一个特征值.
设a>0,函数f(x)在[0,+∞)上连续有界.证明:微分方程y’+ay=f(x)的解在[0,+∞)上有界.
求证:当x>0时,不等式成立.
设p(x),q(x)与f(x)均为连续函数,f(x)≠0.设y1(x),y2(x)与y3(x)是二阶非齐次线性方程y"+p(x)y’+q(x)y=f(x)①的3个解,且则式①的通解为________.
微分方程y"+2y’+2y=e-xsinx的特解形式为()
设A为m×n矩阵,齐次线性方程组AX=0仅有零解的充分条件是()
设y=ex是微分方程xy’+p(x)y=x的一个解,求此微分方程满足条件y|x=ln2=0的特解.
已知η是非齐次线性方程组Ax=b的一个特解,ξ1,ξ2,…,ξn-r,是对应齐次方程组Ax=0的基础解系,证明:η,η+ξ1,η+ξ2,…,η+ξn-r是Ax=b的n-r+1个线性无关解;
随机试题
肝硬化较早且较突出的症状是
具有息风止痉、散结、止痛功效的是()
财产担保分为不动产、动产和权利财产(例如股票、债券、保险单等)担保。这类担保主要是将债务人或第三人的特定财产抵押给其他企业。()
在民事纠纷的解决途径中,那种途径具有强制性()。
为了更好地促进学生发展,提高学生成绩,六年级三班的班主任梁老师根据全班学生的不同水平和接受能力,尝试分层教学,该老师的做法()。
幼儿机械记忆和意义记忆效果的比较,是()。
实施启发式教学的关键在于()
衡量系统可靠性的指标是_________。
向王老帅发一个E-mail,并将考生文件夹下的一个文本文件lunwen.txt作为附件一起发出。具体内容如下:【收什人】wangbin@163.com【主题】论文【函件内容】“王老师:你好,寄上论文一篇,见附件,请审阅。”
A、B、C、D、A
最新回复
(
0
)