首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设 求其中C是圆周x2+y2=32,取逆时针方向.
设 求其中C是圆周x2+y2=32,取逆时针方向.
admin
2014-02-06
94
问题
设
求
其中C是圆周x
2
+y
2
=3
2
,取逆时针方向.
选项
答案
因为[*]可考虑用格林公式计算J,因为P,Q在点(一1,0)处没定义,所以不能在C围成的区域D上直接用格林公式,但可在D中挖掉以(一1,0)为圆心,δ>0充分小为半径的圆所余下的区域中用格林公式见右图.求解如下:以(一1,0)为圆心δ>0充分小为半径作圆周C
ε
-
(取顺时针方向),C
ε
与C同成的区域记为D
ε
,存D
ε
上用格林公式得[*]其中C
ε
+
取逆时针方向。用“控洞法”求得(*)式后,可用C
ε
的方程(x+1)
2
+y
2
=ε
2
简化被积表达式,然后用格林公式得[*]其中D
ε
*
是C
ε
+
所围的区域.[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/wj54777K
0
考研数学一
相关试题推荐
设矩阵,矩阵B=(kE+A)2,其中k为实数,求对角矩阵A,使B与A相似.并求k为何值时,B为正定矩阵.
设b1=a1,b2=a1+a2,…,br=a1+a2+…+ar,且向量组a1,a2,…,ar线性无关,证明向量组b1,b2,…,br线性无关.
设函数f(x)在区间[-1,1]上有三阶连续导数,且f(-1)=0,f(1)=1,f’(0)=0,证明:在(-1,1)内至少存在一点ξ,使得f”’(ξ)=3.
设函数f(x)在区间[a,b]上连续,在(a,b)内可导,且f’(x)>0,如果存在,证明:存在与第二问中ξ不同的η∈(a,b),使得
设=1(x>0,y>0),P(x,y)∈L,过点P作L的切线,求切线与两坐标轴所围成区域面积的最小值.
设曲线L:y=f(x)≥0(x≥0),其中f(x)连续可导,P(x,y)为曲线L上任意一点,过点P的切线在y轴上的截距与过点P的法线在x轴上的截距相等,又曲线经过点M0(1,1),求该曲线方程.
设A为4阶矩阵,r(A)=2,α1,α2为AX=0的两个线性无关解,β1,β2为AX=b的特解,下列四组中可作为AX=b的通解的是().
如下图,连续函数y=f(x)在区间[﹣3,﹣2],[2,3]上图形分别是直径为1的上、下半圆周,在区间[﹣2,0],[0,2]上的图形分别是直径为2的上、下半圆周.设F(x)=
当x→0+时,是x的k阶无穷小,则k=_________.
设A,B为3阶相似矩阵,且|2E+A|=0,λ1=1,λ2=-11为B的两个特征值,则行列式|A+2AB|=________.
随机试题
跟肝风内动有关的舌象是
下列甾体类药物中含有孕甾烷母核结构的是
A.行政许一B.行政处罚C.行政复议D.行政诉讼E.行政指导
甲、乙、丙三国均为南极地区相关条约缔约国。甲国加入条约前,曾对南极某区域提出过领土要求。乙国在成为条约缔约国后,在南极建立了常年考察站。丙国利用自己靠近南极的地理优势,准备在南极大规模开发旅游。依《南极条约》和相关制度,下列哪一判断是正确的?()
软土地区的铁路工程采取土样要求,正确的是()。
图1-1-23为某城市新区主干路AB与次干路CD交叉口规划平面图,规划主干路AB的横断面为双向6条机动车道三块板布置,次干路CD的横断面为双向4条机动车道一块板布置。交叉口设置了5个公交停靠站,其中2、3、5号站为直行、右转公交站,1、4号站为左转公交站,
根据土地增值税相关规定,关于房地产转让的说法,正确的是()。
某公司的招聘面试,同志小张参加,后来,他得到了下面的消息:(1)公司决定他与小李至少会录用一人。(2)公司可能不录用他。(3)公司一定会录用他。(4)公司已经录用小李。这四条消息,两条消息为真,两条为假,那
抗日民主政权的“三三制”原则是指()
ItwasdeclaredthatCarlaMeyerswouldtemporarilytakeoverasPenningtonBank’schieffinancialofficerafterJoshuaGreenber
最新回复
(
0
)