首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设a1>1,又an+1=1+1na. (Ⅰ)证明:方程x=1+1nx有唯一解,并求其解; (Ⅱ)存在,并求此极限.
设a1>1,又an+1=1+1na. (Ⅰ)证明:方程x=1+1nx有唯一解,并求其解; (Ⅱ)存在,并求此极限.
admin
2021-03-10
109
问题
设a
1
>1,又a
n+1
=1+1na.
(Ⅰ)证明:方程x=1+1nx有唯一解,并求其解;
(Ⅱ)
存在,并求此极限.
选项
答案
(Ⅰ)令f(x)=x-1-lnx(x>0), 由f’(x)=[*]得x=1, 当0<x<1时,f’(x)<0;当x>1时,f’(x)>0, 则x=1为f(x)在(0,+∞)内的最小值点,最小值为m=f(1)=0, 故方程x=1+lnx只有唯一解x=1. (Ⅱ)已知a
1
>1, 设a
k
1,则a
k+1
=1+lna
k
>1, 由数学归纳法,对任意的n,有a
n
>1; 由拉格朗日中值定理得 lna
n
=lna
n
-lnl=[*]<a
n
-1,其中1<ξ<a
n
, 于是a
n+1
=1+lna
n
<1+a
n
-1=a
n
,即数列{a
n
}单调递减, 故极限[*]存在. 令[*]由a
n+1
=1+1na
n
得A=1+lnA,解得A=1.
解析
转载请注明原文地址:https://kaotiyun.com/show/0784777K
0
考研数学二
相关试题推荐
(1988年)求函数y=的单调区间,极值,其图形的凹凸区间,拐点,渐近线,并画图.
(2008年试题,二)已知
(2001年)设f(χ)在区间[-a,a](a>0)上具有二阶连续导数,f(0)=0,(1)写出f(χ)的带拉格朗日余项的一阶麦克劳林公式;(2)证明在[-a,a]上至少存在一点η,使a3f〞(η)=∫-aaf(χ)dχ
求曲线y=3一|x2一1|与x轴围成封闭图形绕y=3旋转所得的旋转体的体积.
已知f(x)是周期为5的连续函数,它在x=0的某个邻域内满足关系式f(1+sinx)-3f(1-sinx)=8x+α(x),其中α(x)是当x→0时比x高阶的无穷小,且f(x)在x=1处可导,求曲线y=f(x)在点(6,f(6))处的切线方程。
[*]
设z=z(x,y)是由方程xyz+ln2确定的隐函数,则在点(0,一1,1)的全微分dz=________。
设f(x)是以T为周期的连续函数,且F(x)=∫0xf(t)dt+bx也是以T为周期的连续函数,则b=_______.
设函数f(t)连续,则二重积分dθ∫2cosθ2f(r2)rdr=()
设曲线的极坐标方程为r=eθ,则处的法线的直角坐标方程是________.
随机试题
A.水成像B.功能性MRI成像C.脂肪抑制D.MRI对比增强检查E.MR血管造影静脉注入顺磁性物质
不能引起特异性感染的是
下列哪项不是毒理学试验中溶剂的选择原则
具有一定毒性,不宜持续和过量服用的药物是
甲公司申请强制执行乙公司的财产,法院将乙公司的一处房产列为执行标的。执行中,丙银行向法院主张,乙公司已将该房产抵押贷款,并以自己享有抵押权为由提出异议。乙公司否认将房产抵押给丙银行。经审查,法院驳回丙银行的异议。丙银行拟向法院起诉,关于本案被告的确定,下列
可以直接使用现金结算的最高限额是( )元。
上市公司应将年度报告备置于()。
任何公司都是“________人”,如果不用严格守法就会轻松获利,那么其就没有任何守法的自觉性和主动性。从这个意义上讲,守法的典范不是“自动生成”的,而是环境________的结果。在不同的制度环境中,天使和魔鬼的角色是很容易转变的。填入画横线部分最恰当
从所给的四个选项中,选择最合适的一个填入问号处,使之呈现一定的规律性:
Atatimewheneveryone’smindistheexplosionsofthemoment,itmightseemobtuseofmetodiscussthefourteenthcentury.Bu
最新回复
(
0
)