首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知级数证明:f(x)+f(1一x)+lnx.ln(1一x)=
已知级数证明:f(x)+f(1一x)+lnx.ln(1一x)=
admin
2017-05-31
52
问题
已知级数
证明:f(x)+f(1一x)+lnx.ln(1一x)=
选项
答案
因为幂级[*]的收敛域为[一1,1],所以函数f(x)的定义域是[一1,1],函数f(1一x)的定义域是[0,2]. 令函数F(x)=f(x)+f(1一x)+lnx.ln(1—x),则F(x)的定义域是(0,1). 由于 [*] 所以, F’(x)=f’(x)一f’(1一x)+[lnx.ln(1一x)]’=0,x∈(0,1). 因此,F(x)=f(z)+f(1一x)+lnx.ln(1一x)=c,x∈(0,1). 在上式两端,令x→1
-
,取极限,得[*] 从而f(x)+f(1一x)+ lnx?ln(1一x)=[*]
解析
欲证明一个函数在整个区间上恒等于常数C,常用的一个方法是:证明其导数在该区间上恒为零,再计算某个x的函数值即得.
转载请注明原文地址:https://kaotiyun.com/show/wlu4777K
0
考研数学一
相关试题推荐
设m,n均是正整数,则反常积分的收敛性
设f(x)>0且有连续导数,令(1)确定常数a,使φ(x)在x=0处连续;(2)求φˊ(x);(3)讨论φˊ(x)在x=0处的连续性;(4)证明当x≥0时,φˊ(x)单调增加.
微分方程y〞+y=-2x的通解为_______.
设λ1,λ2是矩阵A的两个不同的特征值,对应的特征向量分别为α1,α2则α1,A(α1+α2)线性无关的充分必要条件是
已知向量组(I):α1,α2,α3;(II):α1,α2,α3,α4;(Ⅲ):α1,α2,α3,α5.如果各向量组的秩分别为r(I)=r(Ⅱ)=3,r(Ⅲ)=4.证明向量组α1,α2,α3,α5-α4的秩为4.
设总体X的概率密度为其中θ为未知参数且大于零.X1,X2,…,Xn为来自总体X的简单随机样本.求θ的矩估计量;
在电炉上安装了四个温控器,其显示温度的误差是随机的,在使用过程中,只要有两个温控器显示的温度不低于临界温度to,电炉就断电,以E表示事件“电炉断电”,设T(1)≤T(2)≤T(3)≤T(4)为四个温控器显示的按递增顺序排列的温度值,则事件E等于()
设常数a≠1/2,则=________.
设f(x)在区间[0,1]上可微,且满足条件f(1)=,试证:存在ξ∈(0,1),使f(ξ)+ξf’(ξ)=0.
设ξ为f(x)=arctanx在[0,a]上使用微分中值定理的中值,则为().
随机试题
能产生LTA的细菌是
管电压在摄影条件选择中的意义,错误的是
保管特殊类型药材必须具有
在公共场所附近开挖沟槽时,应设防护设施,夜间设置照明灯和警示红灯。()
在某些情况下,被保险人患病或遭受意外伤害,最终是否残疾在短期内难以判定,为此保险公司规定一个定残期限,过了该期限后仍无明显好转征兆的,认定为全残。这种情况称为( )。
立面图的绘制中整个建筑的外轮廓尺寸线用( )线绘制。
信用风险管理委员会或类似机构可以考虑重新设定/调整限额的情况有()。
饮水时,应注意遵循少次多量的原则。
把对集体与个人的管理结合起来的班级管理是()。
A、Thecablecarride.B、GoldenGatePark.C、Fisherman’sWharf.D、Busesandstreetcars.A男士问女士最喜欢旧金山的什么,女士回答:“我也不知道,这很难说。我喜欢金门大桥
最新回复
(
0
)