首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)在x=0的某邻域内具有二阶连续导数。且f(0)≠0,f’(0)≠0,f"(0)≠0.证明:存在唯一的一组实数λ1,λ2,λ3,使得当h→0时,λ1f(h)+λ2f(2h)+λ3f(3h)-f(0)是比h2高阶的无穷小.
设函数f(x)在x=0的某邻域内具有二阶连续导数。且f(0)≠0,f’(0)≠0,f"(0)≠0.证明:存在唯一的一组实数λ1,λ2,λ3,使得当h→0时,λ1f(h)+λ2f(2h)+λ3f(3h)-f(0)是比h2高阶的无穷小.
admin
2021-01-19
62
问题
设函数f(x)在x=0的某邻域内具有二阶连续导数。且f(0)≠0,f’(0)≠0,f"(0)≠0.证明:存在唯一的一组实数λ
1
,λ
2
,λ
3
,使得当h→0时,λ
1
f(h)+λ
2
f(2h)+λ
3
f(3h)-f(0)是比h
2
高阶的无穷小.
选项
答案
[详解1] 由题设知,[*]于是 [*][λ
1
f(h)+λ
2
f(2h)+λ
3
f(3h)-f(0)]=λ
1
f(0)+λ
2
f(0)+λ
3
f(0)-f(0)=0, 而f(0)≠0,因此有λ
1
+λ
2
+λ
3
-1=0. 利用洛必塔法则,有[*] 同样有[*][λ
1
f’(h)+2λ
2
f’(2h)十3λ
3
f’(3h)]=(λ
1
+2λ
2
+3λ
3
)f’(0)=0, 而f’(0)≠0,因此有λ
1
+2λ
2
+3λ
3
=0. 再次利用洛必塔法则,有[*] 而f"(0)≠0,因此有λ
1
+4λ
2
+9λ
3
=0. 可见λ
1
,λ
2
,λ
3
满足[*] 由于其系数行列式[*]=2≠0,于是方程组有唯一解,即λ
1
,λ
2
,λ
3
可唯一确定. [详解2] 将f(h),f(2h),f(3h)分别在h=0处用泰勒公式展开,于是有 λ
1
f(h)+λ
2
f(2h)+λ
1
f(3h)-f(0) [*] =(λ
1
+λ
2
+λ
3
—1)f(0)+(λ
1
+2λ
2
+3λ
3
)f’(0)h+(λ+4λ
2
+9λ
3
)[*] 可见λ
1
,λ
2
,λ
3
满足[*] 此方程组有唯一解,因此λ
1
,λ
2
,λ
3
可唯一确定.
解析
题设相当于已知
,由此可用洛必塔法则或泰勒公式确定λ
1
,λ
2
,λ
3
是唯一的.
转载请注明原文地址:https://kaotiyun.com/show/wq84777K
0
考研数学二
相关试题推荐
设A=有三个线性无关的特征向量,则a=_________.
设L:y=e-x(x≥0).设V(c)=,求c.
设z=z(x,y)是由方程x2+y2一z=φ(x+y+z)所确定的函数,其中φ具有二阶导数且φ’≠一1。求dz;
设u=u(x,y,z)连续可偏导,令(1)若,证明:u仅为θ与φ的函数.(2)若,证明:u仅为r的函数.
设某商品需求量Q对价格P的函数关系为求需求Q对于价格P的弹性函数.
设f′(χ)在[0,1]上连续,且f(1)=f(0)=1.证明:∫01f′2(χ)dχ≥1.
设α1,…,αn为n个m维向量,且m<n.证明:α1,…,αn线性相关.
设a>1,f(t)=at一at在(一∞,+∞)内的驻点为t(a)。问a为何值时,t(a)最小?并求出最小值。
设3阶矩阵A的特征值为λ1=1,λ2=2,λ3=3,对应的特征向量依次为(1)将β用ξ1,ξ2,ξ3线性表出;(2)求Anβ(n为正整数).
A=,求A的特征值.判断a,b取什么值时A相似于对角矩阵?
随机试题
下述关于二尖瓣关闭不全患者早期病理生理改变的叙述,正确的是
肾病综合征时可伴哪些血浆蛋白成分下降
诊断中央型肺癌,MRI在哪一方面不如CT
A、气随血脱B、气虚出血C、气血两虚D、瘀血出血E、气滞血瘀患者晨起后突然呕吐不止,面色苍白,四肢厥冷,脉微欲绝。其证型是
引起水体富营养化的原因主要是水中含有过高的
力F1、F2、F3、F4分别作用在刚体上同一平面内的A、B、C、D四点,各力矢首尾相连形成一矩形如图示,该力系的简化结果为()。
()应当在规划草案上报审批前,提出环境影响篇章或说明。
下列关于证券发行承销团承销证券的表述中,不符合证券法律制度规定的是()。
Ascientistwhowantstopredictthewayinwhichconsumerswillspendtheirmoneymuststudyconsumerbehavior.Hemust(1)_____
A、Theywillfindoutwhatitspeoplelike.B、Theywillknowhowtoliveinanotherway.C、Theywillknowthecountryanditspeo
最新回复
(
0
)