首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)在x=0的某邻域内具有二阶连续导数。且f(0)≠0,f’(0)≠0,f"(0)≠0.证明:存在唯一的一组实数λ1,λ2,λ3,使得当h→0时,λ1f(h)+λ2f(2h)+λ3f(3h)-f(0)是比h2高阶的无穷小.
设函数f(x)在x=0的某邻域内具有二阶连续导数。且f(0)≠0,f’(0)≠0,f"(0)≠0.证明:存在唯一的一组实数λ1,λ2,λ3,使得当h→0时,λ1f(h)+λ2f(2h)+λ3f(3h)-f(0)是比h2高阶的无穷小.
admin
2021-01-19
99
问题
设函数f(x)在x=0的某邻域内具有二阶连续导数。且f(0)≠0,f’(0)≠0,f"(0)≠0.证明:存在唯一的一组实数λ
1
,λ
2
,λ
3
,使得当h→0时,λ
1
f(h)+λ
2
f(2h)+λ
3
f(3h)-f(0)是比h
2
高阶的无穷小.
选项
答案
[详解1] 由题设知,[*]于是 [*][λ
1
f(h)+λ
2
f(2h)+λ
3
f(3h)-f(0)]=λ
1
f(0)+λ
2
f(0)+λ
3
f(0)-f(0)=0, 而f(0)≠0,因此有λ
1
+λ
2
+λ
3
-1=0. 利用洛必塔法则,有[*] 同样有[*][λ
1
f’(h)+2λ
2
f’(2h)十3λ
3
f’(3h)]=(λ
1
+2λ
2
+3λ
3
)f’(0)=0, 而f’(0)≠0,因此有λ
1
+2λ
2
+3λ
3
=0. 再次利用洛必塔法则,有[*] 而f"(0)≠0,因此有λ
1
+4λ
2
+9λ
3
=0. 可见λ
1
,λ
2
,λ
3
满足[*] 由于其系数行列式[*]=2≠0,于是方程组有唯一解,即λ
1
,λ
2
,λ
3
可唯一确定. [详解2] 将f(h),f(2h),f(3h)分别在h=0处用泰勒公式展开,于是有 λ
1
f(h)+λ
2
f(2h)+λ
1
f(3h)-f(0) [*] =(λ
1
+λ
2
+λ
3
—1)f(0)+(λ
1
+2λ
2
+3λ
3
)f’(0)h+(λ+4λ
2
+9λ
3
)[*] 可见λ
1
,λ
2
,λ
3
满足[*] 此方程组有唯一解,因此λ
1
,λ
2
,λ
3
可唯一确定.
解析
题设相当于已知
,由此可用洛必塔法则或泰勒公式确定λ
1
,λ
2
,λ
3
是唯一的.
转载请注明原文地址:https://kaotiyun.com/show/wq84777K
0
考研数学二
相关试题推荐
设=_______.
设A为3阶矩阵,|A|=6,|A+E|=|A一2E|=|A+3E|=0,试判断矩阵(2A)*是否相似于对角矩阵,其中(2A)*是(2A)的伴随矩阵.
设f(x)在[a,b]上连续,证明:
求下列y(n):
设f(x,y)=证明:f(x,y)在点(0,0)处可微,但在点(0,0)处不连续.
设矩阵A=的特征值有一个二重根,求a的值,并讨论矩阵A是否可相似对角化。
设u=f(x,y,z)有连续偏导数,y=y(x)和z=z(x)分别由方程exy一y=0和ez一xz=0所确定,求
设四阶矩阵B满足BA-1=2AB+E,且A=,求矩阵B.
设函数f(χ)在区间[0,1]上连续,并设,∫01f(χ)dχ=a,求∫01dχ∫χ1f(χ)f(y)dy.
随机试题
正常人体温维持在37℃左右,一昼夜上下波动不超过()
正常脐带内含有( )。
下列哪些方剂的变化属于药量增减的变化()。
企业对外转让一项土地使用权,取得的价款收入为900000元,土地使用权的账面余额为1000000元,累计摊销440000元,转让时发生以现金支付的费用30000元,此项业务在现金流量表中应()。
事业单位专用基金是指事业单位按规定提取或设置的专门用途的净资产,主要包括修购基金、职工福利基金等。()
根据反不正当竞争法及相关规定,经营者的下列哪些行为属于不正当竞争行为?
教育目的要回答的一个根本问题是()。
新时代不是靠一个人开辟的,它靠众多人高举理想,勇于挑战,即使途中______也毫不畏惧,______,才能开辟新时代,不要怕自己会失败,青年应该想:“即使我成为倒下的一员,也要尽我所能”,甚至在自己倒下的地方,对5年后、10年后、20年后______自己遗
Eatinghealthilycostsabout$1.50moreperpersondaily,accordingtothemostthoroughreviewyetoftheaffordabilityofahe
RisingInequalityIsHoldingBacktheU.S.Economy[A]Inannouncinghisrunforthepresidencylastmonth,JebBushhassetan
最新回复
(
0
)