首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知是矩阵的一个特征向量. 问A能否相似于对角矩阵?并说明理由.
已知是矩阵的一个特征向量. 问A能否相似于对角矩阵?并说明理由.
admin
2019-05-08
60
问题
已知
是矩阵
的一个特征向量.
问A能否相似于对角矩阵?并说明理由.
选项
答案
因为[*] 故A的特征值为λ
1
=λ
2
=λ
3
=-1.因 [*] 所以秩(E-A)=2,从而A的属于三重特征根λ=-1的线性无关的特征向量只有n-秩(-E-A)=3-2=1个,由命题2.5.3.2(3)知,A不能相似对角化. 注:命题2.5.3.2 (3)n阶矩阵A可相似对角化的另一充要条件是A的n
i
重特征值对应的线性无关的特征向量的个数等于其重数n
i
,即n-秩(λ
i
E-A)=n
i
,亦即秩(r
i
E-A)=n-n
i
,其中n
i
为特征值λ
i
的重数,从而将A是否可相似对角化的问题转化为特征矩阵r
i
E-A的秩的计算问题.
解析
转载请注明原文地址:https://kaotiyun.com/show/wsJ4777K
0
考研数学三
相关试题推荐
设函数f(x),g(x)在[a,+∞)上二阶可导,且满足条件f(a)=g(a),f’(a)=g’(a),f’’(x)>g’’(x)(x>a).证明:当x>a时,f(x)>g(x).
设f(x),g(x)在区间[a,b]上连续,且g(x)<f(x)<m,则由曲线y=g(x),y=f(x)及直线x=a,x=b所围成的平面区域绕直线y=m旋转一周所得旋转体体积为().
设以X表示某一推销员一天花费在汽油上的款项(以美元计),以Y表示推销员一天所得的补贴(以美元计),已知X和Y的联合概率密度为(Ⅰ)求边缘概率密度fX(x),fY(y);(Ⅱ)求条件概率密度fY|X(y|x),fX|Y(x|y);(Ⅲ)求x=12时Y
(Ⅰ)设随机变量X服从参数为λ的指数分布,证明:对任意非负实数s及t,有P{X≥s+t|X≥s}=P{X≥t}(Ⅱ)设电视机的使用年数X服从参数为0.1的指数分布,某人买了一台旧电视机,求还能使用5年以上的概率。
假设X是在区间(0,1)内取值的连续型随机变量,而Y=1一X。已知P{X≤0.29}=0.75,则满足P{Y≤k}=0.25的常数k=________。
已知,求a,b的值.
设f(x)在(-1,1)内二阶连续可导,且f’’(x)≠0.证明:(1)对(-1,1)内任一点x≠0,存在唯一的θ(x)∈(0,1),使得f(x)=f(0)+xf’[θ(x)x];(2).
设级数(an-an-1)收敛,且bn绝对收敛.证明:anbn绝对收敛.
设齐次线性方程组,有非零解,且A=为正定矩阵,求a,并求当|X|=时XTAX的最大值.
设A为n阶矩阵,且|A|=a≠0,则|(kA)*|=______.
随机试题
A、Hemissedhisplane.B、Thetaxidriveroverslept.C、Heheardaterribleaccidentreportedovertheradio.D、Hewouldhavebeen
A.附子B.干姜C.两者均用D.两者均不用治疗阳虚水肿,常选用()
患者,女,50岁。因患尿毒症而入院,患者精神萎靡,食欲差,24小时尿量80ml,下腹部空虚,无腹痛。患者目前的排尿状况是
A.抑制细菌细胞壁合成B.抑制细菌蛋白质合成C.抑制细菌DNA依赖的RNA多聚酶D.抑制细菌二氢叶酸还原酶E.抑制细菌DNA合成β-内酰胺类()
原发性痛经的病因不属于继发性痛经分类的选项是
不按期申报、领取房屋租赁证的,由()责令限期补办手续,并可处以罚款。
银行工作人员制作虚假的委托收款凭证交付他人属于()。
发挥人的主观能动性的基本途径是()
A、Thebossisoftenlateforwork.B、Thebosswillprobablydisciplinethewoman.C、Thebossmaydisregardthewoman’slateness.
HowtoUseaLibraryA)You’redrivingyourcarhomefromworkorschool.Andsomethinggoeswrong.Theenginestallsoutatligh
最新回复
(
0
)