首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知总体X是离散型随机变量,X可能取值为0,1,2,且P{X=2}=(1-θ)2,EX=2(1-θ)(0为未知参数). (Ⅰ)试求X的概率分布; (Ⅱ)对X抽取容量为10的样本,其中5个取1,3个取2,2个取0,求θ的矩估计值、最大似然估计
已知总体X是离散型随机变量,X可能取值为0,1,2,且P{X=2}=(1-θ)2,EX=2(1-θ)(0为未知参数). (Ⅰ)试求X的概率分布; (Ⅱ)对X抽取容量为10的样本,其中5个取1,3个取2,2个取0,求θ的矩估计值、最大似然估计
admin
2018-11-23
62
问题
已知总体X是离散型随机变量,X可能取值为0,1,2,且P{X=2}=(1-θ)
2
,EX=2(1-θ)(0为未知参数).
(Ⅰ)试求X的概率分布;
(Ⅱ)对X抽取容量为10的样本,其中5个取1,3个取2,2个取0,求θ的矩估计值、最大似然估计值.
选项
答案
(Ⅰ)设X的概率分布为P{X=0}=p
0
,P{X=1}=p
1
,P{X=2}=p
2
,由题设知p
2
=(1-θ)
2
,又EX=2(1-θ)=0 ×p
0
+1×p
1
+2p
2
=p
1
+2p
2
=p
1
+2(1-θ)
2
,解得p
1
=2(1-θ)-2(1-θ)
2
=2θ(1-θ),而p
0
+p
1
+p
2
=1,所以p
0
=1-p
1
—p
2
=θ
2
,X的概率分布为 [*] (Ⅱ)应用定义求矩估计值、最大似然估计值.令μ=EX=2(1-θ),解得θ=1-[*],于是θ的矩估计量[*],将样本值代入得θ的矩估计值为 1-[*](5×1+3×2+2×0)=1-[*], 即θ的矩估计值[*] 又样本值的似然函数 L(χ
1
,…,χ
10
;θ)=[*]P{X=χ
i
,θ}=[2θ(1-θ)]
5
(1-θ)
6
θ
4
=2
5
θ
9
(1-θ)
11
, lnL=5ln2+9lnθ+11ln(1-θ), 令[*]=0,解得θ最大似然估计值[*].
解析
转载请注明原文地址:https://kaotiyun.com/show/x6M4777K
0
考研数学一
相关试题推荐
设二次型一4x1x2一4x1x3+2ax2x3经正交变换化为,求a,b的值及所用正交变换.
设xOy平面上有正方形D={(x,y)|0≤x≤1,0≤y≤1)及直线l:z+y=t(t≥0).若S(t)表示正方形D位于直线l左下方部分的面积,试求
设函数z=f(u),方程确定u是x,y的函数,其中f(u),φ(u)可微,P(t),φ’(u)连续,且φ’(u)≠1.求
设f(x)是以ω为周期的连续函数,证明:一阶线性微分方程y′+ky=f(x)存在唯一的以ω为周期的特解,并求此特解,其中k≠0为常数.
求证:ex+e-x+2cosx=5恰有两个根.
设某产品的需求函数为Q=Q(p),其对价格P的弹性εP=2,则当需求量为10000件时,价格增加1元会使产品收益增加______元.
已知X,Y为随机变量且P{X≥0,Y≥0}=,P{X≥0}=P{Y≥0}=,设A={max(X,Y)≥0},B={max(X,Y)<0,min(X,Y)<0},C={max(X,Y)≥0,min(X,Y)<0},则P(A)=________,P(B)=__
设有行列式已知1703,3159,975,10959都能被13整除,不计算行列式D,证明D能被13整除.
用过去的铸造方法,零件强度的标准差是1.6kg/mm2.为了降低成本,改变了铸造方法,测得用新方法铸出的零件强度如下:52,53,53,54,54,54,54,51,52.设零件强度服从正态分布,取显著性水平α=0.05,问改变方法后零件强度的方差是否发
已知(X,Y)在以点(0,0),(1,0),(1,1)为顶点的三角形区域上服从均匀分布,对(X,Y)作4次独立重复观察,X+Y不超过1的出现次数为Z,则E(Z2)=________.
随机试题
A.渗透和滤过B.主动转运C.入胞作用D.单纯扩散氨基酸和葡萄糖在小肠的吸收机制为
A.手阳明大肠经B.足阳明胃经C.足太阳膀胱经D.手太阳小肠经E.足少阳胆经起于目内眦的经脉是
市政公用工程施工组织设计必须经( )批准。
甲公司是一家生产和销售钢铁的A股上市公司,其母公司为XYZ集团公司,甲公司为实现规模化经营、提升市场竞争力,多次通过资本市场融资成功进行了同行业并购,迅速扩大和提高了公司的生产能力和技术创新能力,奠定了公司在钢铁行业的地位,实现了跨越式发展,在一系列并购过
根据《旅行社条例实施细则》,旅行社在银行存人质量保证金的,应当设立独立账户,存期由旅行社确定,但不得少于()。
昨天冬冬和妞妞都病了,病症也类似。平日两人每天下午都在一起玩,因此,两人可能患的是同一种病,冬冬的病症有点像链球菌感染,但他患的肯定不是这种病。因此,妞妞患的病也肯定不是链球菌感染。以下哪项最为准确地概括了上述论证中的漏洞?
设无向图G=(V,E)和G’=(V’,E’),如果G’是G的生成树,则下面说法中错误的是()。
被弗洛伊德描述为俄狄浦斯情节出现的阶段是在()。
Mostpeopleseeksomedegreeofinnerpeaceatwork,anditcanbedifficulttoobtain.Workisstressful,andmostofustendt
【S1】【S10】
最新回复
(
0
)