首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A3×3=[α1,α2,α3],方程组Ax=β有通解kξ+η=kE1,2,一3]T+[2,一1,1]T,其中k是任意常数.证明: 方程组[α1+α2+α3+β,α1,α2,α3]x=β有无穷多解,并求其通解.
设A3×3=[α1,α2,α3],方程组Ax=β有通解kξ+η=kE1,2,一3]T+[2,一1,1]T,其中k是任意常数.证明: 方程组[α1+α2+α3+β,α1,α2,α3]x=β有无穷多解,并求其通解.
admin
2014-04-16
121
问题
设A
3×3
=[α
1
,α
2
,α
3
],方程组Ax=β有通解kξ+η=kE1,2,一3]
T
+[2,一1,1]
T
,其中k是任意常数.证明:
方程组[α
1
+α
2
+α
3
+β,α
1
,α
2
,α
3
]x=β有无穷多解,并求其通解.
选项
答案
因r(α
1
,α
2
,α
3
)=r(α
1
,α
2
,α
3
,β)=r(α
1
+α
2
+α
3
+β,α
1
,α
2
,α
3
)=r(α
1
+α
2
+α
3
+β,α
1
,α
2
,α
3
,β)=2,故方程组(α
1
+α
2
+α
3
+β,α
1
,α
2
,α
3
)x=β有无穷多解,且其通解形式为k
1
ξ
1
+k
2
ξ
2
+η
*
,其中η
*
为方程组的特解.由式(**)[*]得[*]在(***)式中取k=0,则得[*]得[*]观察[*]故方程组(α
1
+α
2
+α
3
+β,α
1
,α
2
,α
3
)x=β的通解为k
1
ξ
1
+k
2
ξ
2
+η
*
=k
1
ξ
1
+k
2
(η
1
一η
2
)+η
1
=k
1
[0,1,2,-3]
T
+k
2
[一1,3,0,2]
T
+[0,2,一1,1]
T
.
解析
转载请注明原文地址:https://kaotiyun.com/show/xH34777K
0
考研数学二
相关试题推荐
(14年)设α1,α2,α3均为3维向量,则对任意常数k,l,向量组α1+kα3,α2+lα3线性无关是向量组α1,α2,α3线性无关的【】
(2007年)曲线渐近线的条数为()
设0<P(A)<1,0<P(B)<1,P(A|B)+P()一1,则事件A和B
(01年)设f(χ)的导数在χ=a处连续,又=-1,则
[2003年]设试补充定义f(1),使得f(x)在区间[1/2,1]上连续.
(1996年)设f(x)在区间[0,1]上可微,且满足条件,试证:存在ξ∈(0,1),使f(ξ)+ξf’(ξ)=0.
[2018年]设平面区域D由曲线与直线及y轴围成,计算二重积分
设有一个边长为a的质地均匀的正立方体Γ沉入一个体积很大的水池,假设水池的水深为a,并且立方体Γ的上表面恰好与水面重合,又设水的密度为ρ,立方体Γ的密度为kp,其中k>1为常数,重力加速度为g.试利用定积分方法计算将立方体Γ提升出水面需要做的功.
设f(x)为正值连续函数且f(x)<a,a为正常数,则b∈(0,1),有()。
设A为三阶矩阵,且有三个互异的正的特征值,设矩阵B=(A*)2-4E的特征值为0,5,32.求A-1的特征值并判断A-1是否可对角化.
随机试题
CO2气体保护焊时,产生的气孔主要是由于保护气层被破坏,使空气入侵而形成氮气
中唐新乐府运动的倡导者是()
唇裂是由于以下哪两种突起不能联合形成的
下列哪项是引起便血的小肠疾病
最常用的超临界流体是()。
背景某安装工程公司经过招投标、评标、决标,与某机场建设部门订立了新建航站楼弱电系统工程项目施工合同,同时某建筑企业承担了航站楼土建工程的建设任务。施工过程中,发生了如下事件:事件一:在施工过程中,为保证工程质量,安装公司改进了部分线缆的接续工艺,人工费
With950millionpeople,IndiarankssecondtoChinaamongthemostpopulouscountries.ButsinceChina【B1】______afamilyplan
在UML中,(46)把活动图中的活动划分为若干组,并将划分的组指定给对象,这些对象必须履行该组所包括的活动,它能够明确地表示哪些活动是由哪些对象完成的。
TheproportionofworkscutforthecinemainBritaindroppedfrom40percentwhenIjoinedtheBBFCin1975tolessthan4per
A、Sydney.B、Paris.C、Tokyo.D、NewYorkCity.C短文提到,新加坡取代去年位于榜首的东京,成为生活成本最高的城市,故选C。
最新回复
(
0
)