首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设曲线y=f(x),其中y=f(x)是可导函数,且f(x)>0。已知曲线y=f(x)与直线y=0,x=1及x=t(t>1)所围成的曲边梯形绕戈轴旋转一周所得立体的体积值是该曲边梯形面积值的,πt倍,求该曲线方程。
设曲线y=f(x),其中y=f(x)是可导函数,且f(x)>0。已知曲线y=f(x)与直线y=0,x=1及x=t(t>1)所围成的曲边梯形绕戈轴旋转一周所得立体的体积值是该曲边梯形面积值的,πt倍,求该曲线方程。
admin
2018-08-12
53
问题
设曲线y=f(x),其中y=f(x)是可导函数,且f(x)>0。已知曲线y=f(x)与直线y=0,x=1及x=t(t>1)所围成的曲边梯形绕戈轴旋转一周所得立体的体积值是该曲边梯形面积值的,πt倍,求该曲线方程。
选项
答案
根据旋转体的体积公式, V=∫
1
t
πf
2
(x)dx=π∫
1
t
f
2
(x)dx, 而曲边梯形的面积为s=∫
1
t
f(x)dx,则由题意可知V=πts可以得到 V=π∫
1
t
(x)dx=πt∫
1
t
f(x)dx, 因此可得 ∫
1
t
f
2
(x)dx=t∫
1
t
f(x)dx 上式两边同时对t求导可得 f
2
(t)=∫
1
t
f(x)dx+tf(t), 即 f
2
(t)一tf(t)=∫
1
t
f(x)dx。 继续求导可得 2f(t)-f’(t)一tf’(t)=f(t), 化简 [2f(t)一t]f’(t)=2f(t). 亦即 [*] 解这个微分方程得[*] 在f
2
(t)一tf(t)=∫
1
t
f(x)dx中令t=1,则f
2
(1)一f(1)=0,又f(t)>0,即f(1)=1,将其代入 [*] 因此该曲线方程为 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/xLj4777K
0
考研数学二
相关试题推荐
设α1,…,αm,β为m+1维向量,β=α1+…+αm(m>1).证明:若α1,…,αm线性无关,则β-α1,…,β-αm线性无关.
设A为三阶矩阵,且|A|=4,则=_______
设A=有三个线性无关的特征向量,求x,y满足的条件.
参数a取何值时,线性方程组有无数个解?求其通解.
设A为n阶矩阵,A11≠0.证明:非齐次线性方程组AX=b有无穷多个解的充分必要条件是A*,α2b=0.
计算I=y2dσ,其中D由x=-2,y=2,x轴及曲线x=-围成.
y=ex在x=0处的曲率半径为R=_______.
设f(x,y)=kx2+2kxy+y2在点(0,0)处取得极小值,求k的取值范围.
设f(x,y)在点(0,0)处连续,且其中a,b,C为常数.(1)讨论f(x,y)在点(0,0)处是否可微,若可微则求出df(x,y)|(0,0);(2)讨论f(x,y)在点(0,0)处是否取极值,说明理由.
设4维向量组α1=(1+a,1,1,1)T,α2=(2,2+a,2,2)T,α3=(3,3,3+a,3)T,α4=(4,4,4,4+a)T,问a为何值时,α1,α2,α3,α4线性相关?当α1,α2,α3,α4线性相关时,求其一个极大线性无关组,并将其余向
随机试题
A.occursmostinfrequentlyB.isshiftedsidewaysbystrongwindsC.striketwiceormoreinthesamespotD.isequippedwith
A.花序B.花蕾C.花粉D.柱头E.开放的花辛夷的药用部位是
A、壮腰健肾丸B、四妙丸C、仙灵骨葆胶囊D、木瓜丸E、颈复康颗粒湿热下注所致的痹病宜选用
一般来说,证券买卖委托受理过程不包括()。
会计账户按提供指标的()分类,可分为总分类账户和明细分类账户。
MMPI因子,M得分的解释与原量表()的解释是一致的。
下列说法正确的是:
公司中有多个部门和多名职员,每个职员只能属于一个部门,一个部门可以有多名职员。则实体部门和职员间的联系是
打开工作簿文件excel.xlsx。(1)将Sheetl工作表的A1:E1单元格合并为一个单元格,内容水平居中;计算“总产量(吨)”“总产量排名”(利用RANK函数,降序);利用条件格式“数据条”下“实心填充”中的“蓝色数据条”修饰D3:D9单元格区域。
Moderntheatreaudiencesarelessabletounderstandclassicalplaysthanpreviousgenerationsbecauseofadecliningknowledge
最新回复
(
0
)