首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n阶矩阵,P是n阶可逆矩阵,n维列向量α是矩阵A的属于特征值λ的特征向量,那么在下列矩阵中 ①A2; ②P-1AP; ③AT; ④E一A。 α肯定是其特征向量的矩阵个数为( )
设A是n阶矩阵,P是n阶可逆矩阵,n维列向量α是矩阵A的属于特征值λ的特征向量,那么在下列矩阵中 ①A2; ②P-1AP; ③AT; ④E一A。 α肯定是其特征向量的矩阵个数为( )
admin
2019-07-12
52
问题
设A是n阶矩阵,P是n阶可逆矩阵,n维列向量α是矩阵A的属于特征值λ的特征向量,那么在下列矩阵中
①A
2
; ②P
-1
AP; ③A
T
; ④E一
A。
α肯定是其特征向量的矩阵个数为( )
选项
A、1。
B、2。
C、3。
D、4。
答案
B
解析
由Aa=λα,α≠0,有A
2
α=A(λα)=Aα=λ
2
α,即α必是A
2
属于特征值λ
2
的特征向量。
又 (E—
A)α=α一
-Aα=(1一
λ)α,
知α必是矩阵E一
A属于特征值1一
λ的特征向量。
关于②和③则不一定成立,这是因为(P
-1
AP)(P一α)=p
-1
Aα=λP
-1
α,
按定义,矩阵P
-1
AP的特征向量是P
-1
α。因为P
-1
α与α不一定共线,因此α不一定是P
-1
AP的特征向量,即相似矩阵的特征向量是不一样的。
线性方程组(λE—A)x=0与(AE一A
T
)x=0不一定同解,所以α不一定是第二个方程组的解,即α不一定是A
T
的特征向量,故选B。
转载请注明原文地址:https://kaotiyun.com/show/xRJ4777K
0
考研数学三
相关试题推荐
设y=y(x,z)是由方程ex+y+z=x2+y2+z2确定的隐函数,则
设X,Y的概率分布为且P(XY=0)=1.求(X,Y)的联合分布;
设X~N(μ,σ2),其分布函数为F(x),对任意实数a,讨论F(一a)+F(a)与1的大小关系.
设离散型随机变量X的分布函数为则Y=X2+1的分布函数为____________.
设曲线L位于xOy平面的第一象限内,L上任意一点M处的切线与y轴总相交,交点为A,已知|MA|=|OA|,且L经过点求L的方程.
设单位质点在水平面内作直线运动,初速度v|t=0=v0.已知阻力与速度成正比(比例系数为1),问t为多少时此质点的速度为并求到此时刻该质点所经过的路程.
求常数a,b使得
设f(x)连续可导,g(x)在x=0的邻域内连续,且g(0)=1,f’(x)=-sin2x+∫0xg(x—t)dt,则().
设随机变量X满足|X|≤1,且,在{-1<X<1}发生的情况下,X在(-1,1)内任一子区间上的条件概率与该子区间长度成正比.求X的分布函数;
设f(x,y)在点(a,b)的某邻域具有二阶连续偏导数,且f’y(a,b)≠0,证明由方程f(x,y)=0在x=a的某邻域所确定的隐函数y=φ(x)在x=a处取得极值b=φ(a)的必要条件是:f(a,b)=0,f’x(a,b)=0,且当
随机试题
蜀道之难,________!
枸橼酸铋钾为
某市人民法院审理市人民检察院依照审判监督程序提出抗诉的案件时,原审被告人王某收到抗诉书后下落不明。该法院应当作出什么处理?()
( )标准定义了环境审核及有关术语,并阐述了环境审核通用原则,宗旨是向组织、审核员和委托方提供如何进行环境审核的一般原则。
下列关于会计科目的表述中,正确的有()。
“贷放分控”的基本含义包括()。
市净率可以用来反映股票的投资价值。一般来说,市净率较高的股票,投资价值较高;反之,则投资价值较低。()
(2010年广东.材料二)根据下列资料和图形,回答下列问题。2008年各级财政共支出城市低保资金393.4亿元,比上年增长41.8%,保障了2330多万城镇贫困人口的基本生活。得到最低生活保障人员中:在职人员82.2万人,占总人数的3.5%,灵
对所有产品都进行了检查,并没有发现假冒伪劣产品。如果上述断定为假。则以下哪项为真?I.有的产品尚未经检查,但发现了假冒伪劣产品。Ⅱ.或者有的产品尚未经过检查,或者发现了假冒伪劣产品。Ⅲ.如果对所有产品都进行了检查,则
America’sDiplomaticChallengesVocabularyandExpressionscombatmissionTalibanseparatistDepartmentofDe
最新回复
(
0
)