首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n阶矩阵,P是n阶可逆矩阵,n维列向量α是矩阵A的属于特征值λ的特征向量,那么在下列矩阵中 ①A2; ②P-1AP; ③AT; ④E一A。 α肯定是其特征向量的矩阵个数为( )
设A是n阶矩阵,P是n阶可逆矩阵,n维列向量α是矩阵A的属于特征值λ的特征向量,那么在下列矩阵中 ①A2; ②P-1AP; ③AT; ④E一A。 α肯定是其特征向量的矩阵个数为( )
admin
2019-07-12
60
问题
设A是n阶矩阵,P是n阶可逆矩阵,n维列向量α是矩阵A的属于特征值λ的特征向量,那么在下列矩阵中
①A
2
; ②P
-1
AP; ③A
T
; ④E一
A。
α肯定是其特征向量的矩阵个数为( )
选项
A、1。
B、2。
C、3。
D、4。
答案
B
解析
由Aa=λα,α≠0,有A
2
α=A(λα)=Aα=λ
2
α,即α必是A
2
属于特征值λ
2
的特征向量。
又 (E—
A)α=α一
-Aα=(1一
λ)α,
知α必是矩阵E一
A属于特征值1一
λ的特征向量。
关于②和③则不一定成立,这是因为(P
-1
AP)(P一α)=p
-1
Aα=λP
-1
α,
按定义,矩阵P
-1
AP的特征向量是P
-1
α。因为P
-1
α与α不一定共线,因此α不一定是P
-1
AP的特征向量,即相似矩阵的特征向量是不一样的。
线性方程组(λE—A)x=0与(AE一A
T
)x=0不一定同解,所以α不一定是第二个方程组的解,即α不一定是A
T
的特征向量,故选B。
转载请注明原文地址:https://kaotiyun.com/show/xRJ4777K
0
考研数学三
相关试题推荐
设xy=xf(z)+yg(z),且xf′(z)+yg′(z)≠0,其中z=z(x,y)是x,y的函数.证明:
设z=z(x,y)由x—yz+yez-x-y=0确定,求及dz.
袋中有10个大小相等的球,其中6个红球4个白球,随机抽取2个,每次取1个,定义两个随机变量如下:就下列两种情况,求(X,Y)的联合分布律:第一次抽取后放回;
设A为n阶矩阵,α1,α2,α3为n维列向量,其中α1≠0,且Aα1=α1,Aα2=α1+α2,Aα3=α2+α3,证明:α1,α2,α3线性无关.
设A是n阶正定矩阵,证明:|E+A|>1.
(2002年)设总体X的概率密度为f(x;θ)=而X1,X2,…,Xn是来自总体X的简单随机样本,则未知参数θ的矩估计量为______。
设随机变量X满足|X|≤1,且,在{-1<X<1}发生的情况下,X在(-1,1)内任一子区间上的条件概率与该子区间长度成正比.求X的分布函数;
设f(x)在x=0的某邻域连续且f(0)=0,=2,则f(x)在x=0处
设则du|(1,1,1)=_______.
设函数f(x)在x=2的某邻域内可导,且f’(x)=ef(x),f(2)=1,计算f(n)(2).
随机试题
中间均衡模型
下列哪种疾病可导致前负荷增加?
肝细胞癌的肿瘤标记物是
下列哪项属于语言交流
在Word中,当选择“文件”菜单中的“另存为”命令后,输入的文件名是一个已经存在的文件,Word会()。
股权投资基金收益分配主体包括()。I.投资者Ⅱ.管理人Ⅲ.服务机构Ⅳ.自律组织Ⅴ.监管部门
银行业执业人员应当了解客户,但不得()。
历史题材作品妇孺皆悦、老少咸宜,自古以来为民众____________________。其优势在于能提供给观众和读者以民族认同、文化认同,其故事和人物往往深深根植于民族精神传统,犹如____________________的大树,每片叶子的纹理都向你诉说一
Treesareusefultomaninthreeveryimportantways:theysupplyhimwithwoodandotherproducts;theygivehimshade;andthe
Itisgenerallyacknowledgedthatyoungpeoplefrompoorersocioeconomicbackgroundstendtodolesswellinoureducationsyste
最新回复
(
0
)