首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设有向量组(I):α1=(1,0,2)T,α2=(1,1,3)T,α3=(1,-1,a+2)T和向量组(Ⅱ):β1=(1,2,a+3)T,β2=(2,1,a+6)T,β3=(2,1,a+4)T. 当a为何值时,向量组(I)与(Ⅱ)等价?
设有向量组(I):α1=(1,0,2)T,α2=(1,1,3)T,α3=(1,-1,a+2)T和向量组(Ⅱ):β1=(1,2,a+3)T,β2=(2,1,a+6)T,β3=(2,1,a+4)T. 当a为何值时,向量组(I)与(Ⅱ)等价?
admin
2013-04-04
62
问题
设有向量组(I):α
1
=(1,0,2)
T
,α
2
=(1,1,3)
T
,α
3
=(1,-1,a+2)
T
和向量组(Ⅱ):β
1
=(1,2,a+3)
T
,β
2
=(2,1,a+6)
T
,β
3
=(2,1,a+4)
T
.
当a为何值时,向量组(I)与(Ⅱ)等价?
选项
答案
对(α
1
,α
2
,α
3
:β
1
,β
2
,β
3
)作初等行变换,有 (α
1
,α
2
,α
3
:β
1
,β
2
,β
3
)=[*] [*] 当a≠-1时,行列式丨α
1
,α
2
,α
3
丨=a+1≠0,由克莱姆法则,知三个线性方程组x
1
α
1
+x
2
α
2
+x
3
α
3
=β
i
(i=1,2,3) 均有唯一解. 所以,β
1
,β
2
,β
3
可由向量组(I)线性表出. 由于行列式 丨β
1
,β
2
,β
3
丨=[*] 方程组x
1
β
1
+x
2
β
2
+x
3
β
3
=β
j
(j=1,2,3))恒有唯一解,即α
1
,α
2
,α
3
总可由向量组(Ⅱ)线性表出. 因此,当n≠-1时,向量组(I)与(Ⅱ)等价.
解析
所谓向量组(I)与(Ⅱ)等价,即向量组(I)与(Ⅱ)可以互相线性表m.若方程组x
1
α
1
+x
2
α
2
+x
3
α
3
=β有解,即β可以由α
1
,α
2
,α
3
线性表出.若对同一个a,三个方程组x
1
α
1
+x
2
α
2
+x
3
α
3
=β
i
(i=1,2,3)均有解,即向量组(Ⅱ)可以由(I)线性表出.
转载请注明原文地址:https://kaotiyun.com/show/xX54777K
0
考研数学一
相关试题推荐
函数f(x)=在(一∞,+∞)内
若f(x)=一f(一x),在(0,+∞)内,f’(x)>0,f"(x)>0,则f(x)在(一∞,0)内
设A是任一n(n≥3)阶方阵,A*是其伴随矩阵,又k为常数,且k≠0,±1,则必有(kA)*=()
要使ξ1=[1,0,2]T,ξ2=[0,1,一1]T都是线性方程组AX=0的解,只要系数矩阵A为().
[2014年]设α1,α2,α3是3维向量,则对任意常数k,l,向量α1+kα3,α2+lα3线性无关是向量组α1,α2,α3线性无关的().
设函数f(x)在x=0的某邻域内具有二阶连续导数。且f(0)≠0,f’(0)≠0,f"(0)≠0.证明:存在唯一的一组实数λ1,λ2,λ3,使得当h→0时,λ1f(h)+λ2f(2h)+λ3f(3h)-f(0)是比h2高阶的无穷小.
设矩阵A=,B=,且存在矩阵X,使得AX=B+2X.求参数a,b;
当x→0时,(-1)ln(1+x2)是比xkarctanx高阶的无穷小,而xkarctanx是比(1-)∫0xdt高阶的无穷小,则k的取值范围是()。
曲线y=y(x)可表示为x=t3-t,y=t4+t,t为参数,证明:y=y(x)在t=0处为拐点。
随机试题
能产生LTA的细菌是
管电压在摄影条件选择中的意义,错误的是
保管特殊类型药材必须具有
在公共场所附近开挖沟槽时,应设防护设施,夜间设置照明灯和警示红灯。()
在某些情况下,被保险人患病或遭受意外伤害,最终是否残疾在短期内难以判定,为此保险公司规定一个定残期限,过了该期限后仍无明显好转征兆的,认定为全残。这种情况称为( )。
立面图的绘制中整个建筑的外轮廓尺寸线用( )线绘制。
信用风险管理委员会或类似机构可以考虑重新设定/调整限额的情况有()。
饮水时,应注意遵循少次多量的原则。
把对集体与个人的管理结合起来的班级管理是()。
A、Thecablecarride.B、GoldenGatePark.C、Fisherman’sWharf.D、Busesandstreetcars.A男士问女士最喜欢旧金山的什么,女士回答:“我也不知道,这很难说。我喜欢金门大桥
最新回复
(
0
)