首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设有向量组(I):α1=(1,0,2)T,α2=(1,1,3)T,α3=(1,-1,a+2)T和向量组(Ⅱ):β1=(1,2,a+3)T,β2=(2,1,a+6)T,β3=(2,1,a+4)T. 当a为何值时,向量组(I)与(Ⅱ)等价?
设有向量组(I):α1=(1,0,2)T,α2=(1,1,3)T,α3=(1,-1,a+2)T和向量组(Ⅱ):β1=(1,2,a+3)T,β2=(2,1,a+6)T,β3=(2,1,a+4)T. 当a为何值时,向量组(I)与(Ⅱ)等价?
admin
2013-04-04
75
问题
设有向量组(I):α
1
=(1,0,2)
T
,α
2
=(1,1,3)
T
,α
3
=(1,-1,a+2)
T
和向量组(Ⅱ):β
1
=(1,2,a+3)
T
,β
2
=(2,1,a+6)
T
,β
3
=(2,1,a+4)
T
.
当a为何值时,向量组(I)与(Ⅱ)等价?
选项
答案
对(α
1
,α
2
,α
3
:β
1
,β
2
,β
3
)作初等行变换,有 (α
1
,α
2
,α
3
:β
1
,β
2
,β
3
)=[*] [*] 当a≠-1时,行列式丨α
1
,α
2
,α
3
丨=a+1≠0,由克莱姆法则,知三个线性方程组x
1
α
1
+x
2
α
2
+x
3
α
3
=β
i
(i=1,2,3) 均有唯一解. 所以,β
1
,β
2
,β
3
可由向量组(I)线性表出. 由于行列式 丨β
1
,β
2
,β
3
丨=[*] 方程组x
1
β
1
+x
2
β
2
+x
3
β
3
=β
j
(j=1,2,3))恒有唯一解,即α
1
,α
2
,α
3
总可由向量组(Ⅱ)线性表出. 因此,当n≠-1时,向量组(I)与(Ⅱ)等价.
解析
所谓向量组(I)与(Ⅱ)等价,即向量组(I)与(Ⅱ)可以互相线性表m.若方程组x
1
α
1
+x
2
α
2
+x
3
α
3
=β有解,即β可以由α
1
,α
2
,α
3
线性表出.若对同一个a,三个方程组x
1
α
1
+x
2
α
2
+x
3
α
3
=β
i
(i=1,2,3)均有解,即向量组(Ⅱ)可以由(I)线性表出.
转载请注明原文地址:https://kaotiyun.com/show/xX54777K
0
考研数学一
相关试题推荐
设函数g(x)可微,h(x)=e1+g(x),h’(1)=1,g’(I)=2,则g(1)等于
(08年)如图,曲线段的方程为y=f(x),函数f(x)在区间[0,a]上有连续的导数,则定积分∫0axf’(x)dx等于
设函数f(x)在定义域内可导,y=f(x)的图形如图所示,则导函数y=f(x)的图形为_______.
(2005年试题,二)设λ1,λ2是矩阵A的两个不同的特征值,对应的特征向量分别为α1,α2,则α1,A(α1+α2)线性无关的充分必要条件是().
设函数f(x)在[0,1]上f"(x)>0,则f’(1)、f’(0)、f(1)一f(0)或f(0)一f(1)的大小顺序是
设A=(α1,α2,α3,α4)是4阶矩阵,A*为A的伴随矩阵,若(1,0,1,0)T是方程组Ax=0的一个基础解系,则A*x=0的基础解系可为
设(Ⅰ)求满足Aξ2=ξ1,A2ξ2=ξ1的所有向量ξ2,ξ3;(Ⅱ)对(Ⅰ)中的任意向量ξ2,ξ3,证明ξ1,ξ2,ξ3线性无关.
[2002年]设函数f(u)可导,y=f(x2).当自变量x在x=一1处取得增量Δx=一0.1时,相应的函数增量Δy的线性主部为0.1,则f'(1)=().
已知下列非齐次线性方程组(Ⅰ),(Ⅱ):当方程组(Ⅱ)中的参数m,n,t为何值时,方程组(Ⅰ)与(Ⅱ)同解.
随机试题
久病畏寒,多见于哪种证候
关于初乳与成熟乳比较,正确的是( )
国际工程中经常遇到的外汇问题有哪些?
背景资料:某施工单位承接了一条二级公路施工任务,其中有一座跨越河流的大型桥梁。由于项目工期紧,临时便桥的修建不能短期完成,且河水很深,河床泥土松软,桩基承载力不够且施工困难。施工现场紧邻居民区,对因生产工艺要求,确需在夜间进行超过噪声标
甲、乙、丙、丁和戊采用募集方式设立A股份有限公司,5位发起人认购了部分股份,其余部分向社会公开募集。随后,公司召开创立大会,审议发起人关于公司筹办情况的报告,并决定成立公司。公司董事会决定由丙担任公司总经理。在公司成立后第8个月,丁因故急需用钱,遂决定将其
甲公司是一家制造业企业,只生产和销售一种新型保温容器。产品直接消耗的材料分为主要材料和辅助材料。各月在产品结存数量较多,波动较大,公司在分配当月完工产品与月末在产品的成本时,对辅助材料采用约当产量法,对直接人工和制造费用采用定额比例法。2016年6月有关
《公司法》原则上规定了股份有限公司不得收购本公司股份,下列属例外情形的有()。
设随机变量X与Y相互独立,其分布函数分别为FX(x)与FY(y),则z=max{X,Y}的分布函数FZ(z)是
设f(t)连续并满足f(t)=cos2t+∫01(s)sinsds,求f(t).
通常软件测试实施的步骤是
最新回复
(
0
)