首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设有向量组(I):α1=(1,0,2)T,α2=(1,1,3)T,α3=(1,-1,a+2)T和向量组(Ⅱ):β1=(1,2,a+3)T,β2=(2,1,a+6)T,β3=(2,1,a+4)T. 当a为何值时,向量组(I)与(Ⅱ)等价?
设有向量组(I):α1=(1,0,2)T,α2=(1,1,3)T,α3=(1,-1,a+2)T和向量组(Ⅱ):β1=(1,2,a+3)T,β2=(2,1,a+6)T,β3=(2,1,a+4)T. 当a为何值时,向量组(I)与(Ⅱ)等价?
admin
2013-04-04
39
问题
设有向量组(I):α
1
=(1,0,2)
T
,α
2
=(1,1,3)
T
,α
3
=(1,-1,a+2)
T
和向量组(Ⅱ):β
1
=(1,2,a+3)
T
,β
2
=(2,1,a+6)
T
,β
3
=(2,1,a+4)
T
.
当a为何值时,向量组(I)与(Ⅱ)等价?
选项
答案
对(α
1
,α
2
,α
3
:β
1
,β
2
,β
3
)作初等行变换,有 (α
1
,α
2
,α
3
:β
1
,β
2
,β
3
)=[*] [*] 当a≠-1时,行列式丨α
1
,α
2
,α
3
丨=a+1≠0,由克莱姆法则,知三个线性方程组x
1
α
1
+x
2
α
2
+x
3
α
3
=β
i
(i=1,2,3) 均有唯一解. 所以,β
1
,β
2
,β
3
可由向量组(I)线性表出. 由于行列式 丨β
1
,β
2
,β
3
丨=[*] 方程组x
1
β
1
+x
2
β
2
+x
3
β
3
=β
j
(j=1,2,3))恒有唯一解,即α
1
,α
2
,α
3
总可由向量组(Ⅱ)线性表出. 因此,当n≠-1时,向量组(I)与(Ⅱ)等价.
解析
所谓向量组(I)与(Ⅱ)等价,即向量组(I)与(Ⅱ)可以互相线性表m.若方程组x
1
α
1
+x
2
α
2
+x
3
α
3
=β有解,即β可以由α
1
,α
2
,α
3
线性表出.若对同一个a,三个方程组x
1
α
1
+x
2
α
2
+x
3
α
3
=β
i
(i=1,2,3)均有解,即向量组(Ⅱ)可以由(I)线性表出.
转载请注明原文地址:https://kaotiyun.com/show/xX54777K
0
考研数学一
相关试题推荐
(00年)设函数f(x)满足关系式f"(x)+[f’(x)]2=x,且f’(0)=0,则
(95年)设f(x)和φ(x)在(一∞.+∞)上有定义,f(x)为连续函数,且f(x)≠0,φ(x)有间断点,则
设函数g(x)可微,h(x)=e1+g(x),h’(1)=1,g’(I)=2,则g(1)等于
微分方程y"一λ2y=eλx+e一λx(λ>0)的特解形式为
若函数f(x)=在x=0处连续,则()
设函数f(x)在[0,1]上f"(x)>0,则f’(1)、f’(0)、f(1)一f(0)或f(0)一f(1)的大小顺序是
设A=(α1,α2,α3,α4)是4阶矩阵,A*为A的伴随矩阵,若(1,0,1,0)T是线性方程组Ax:O的一个基础解系,则A”x:0的基础解系可为
[2010年]设函数y=f(x)由参数方程(t>一1)所确定,其中Ψ(t)具有二阶导数,且Ψ(1)=5/2,Ψ′(1)=6.已知,求函数Ψ(t).
求抛物面壳的质量,此抛物面壳的面密度为z
已知u=g(siny),其中g’(v)存在,y=f(x)由参数方程所确定,求du.
随机试题
兼有镇静、催眠、抗惊厥、抗癫痫等作用的镇静催眠药是
腹股沟疝或复发症的发病机制右腹沟疝多见的原因
诊断双胎妊娠最常用的方法是
青春期哪一系统发育速度骤然加快
物业管理招标方式有()。
根据《会计档案管理办法》的规定,下列各项中,属于会计档案的有()。
房屋建筑电气工程设备主要包括()。
获初级导游员资格2年以上,业绩明显,经考试合格晋升为中级导游员。()
下列名胜古迹属于四川自贡的有()。
帝王陵的地面建筑最主要的三部分是()。
最新回复
(
0
)