设f(x)在[a,b]上连续,且f’’(x)>0,对任意的x1,x2∈[a,b]及0<λ<1,证明:f[λx1+(1-λ)x2]≤λ

admin2019-02-23  44

问题 设f(x)在[a,b]上连续,且f’’(x)>0,对任意的x1,x2∈[a,b]及0<λ<1,证明:f[λx1+(1-λ)x2]≤λ

选项

答案不妨设a≤b,由微分中值定理,存在ξ1∈(0,a),ξ2∈(b,a+b),使得 [*] 两式相减得f(a+b)-f(a)-f(b)=[f’(ξ2)-f’(ξ1)]a. 因为f’’(x)>0,所以f’(x)单调增加,而ξ1<ξ2,所以f’(ξ1)<f’(ξ2), 故f(a+b)-f(a)-f(b)=[f’(ξ2)=f’(ξ1)]a>0,即 f(a+b)>f(a)+f(b).

解析
转载请注明原文地址:https://kaotiyun.com/show/xaj4777K
0

最新回复(0)