首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(1987年)(1)设f(χ)在[a,b]内可导,且f′(χ)>0,则f(χ)在(a,b)内单调增加. (2)设g(χ)在χ=c处二阶可导,且g′(c)=0,g〞(c)<0,则g(c)为g(χ)的一个极大值.
(1987年)(1)设f(χ)在[a,b]内可导,且f′(χ)>0,则f(χ)在(a,b)内单调增加. (2)设g(χ)在χ=c处二阶可导,且g′(c)=0,g〞(c)<0,则g(c)为g(χ)的一个极大值.
admin
2019-06-09
48
问题
(1987年)(1)设f(χ)在[a,b]内可导,且f′(χ)>0,则f(χ)在(a,b)内单调增加.
(2)设g(χ)在χ=c处二阶可导,且g′(c)=0,g〞(c)<0,则g(c)为g(χ)的一个极大值.
选项
答案
(1)设a<χ
1
<χ
2
<b,由拉格朗日中值定理知:f(χ
2
)-f(χ
1
)=f′(ξ)(χ
2
-χ
1
),由f′(χ)>0知f(χ
2
)>f(χ
1
),则f(χ)在(a,b)上单调增. (2)由于g〞(c)=[*]<0,根据极限的保号性知,存在c的某个去心邻域,使[*]<0,则c点左半邻域g′(χ)>>0,而c点的右半邻域g′(χ)<0.由极值第一充分条件知g(χ)在χ=c取得极大值.
解析
转载请注明原文地址:https://kaotiyun.com/show/xeV4777K
0
考研数学二
相关试题推荐
设f(χ)在[0,+∞)上连续,且f(0)>0,设f(χ)在[0,χ]上的平均值等于f(0)与f(χ)的几何平均数,求f(χ).
从一艘破裂的油轮中渗漏出来的油,在海面上逐渐扩散形成油层.设在扩散的过程中,其形状一直是一个厚度均匀的圆柱体,其体积也始终保持不变.已知其厚度h的减少率与h3成正比,试证明:其半径r的增加率与r3成反比.
设函数f(x)在(一∞,+∞)上有定义,在区间[0,2]上,f(x)=x(x2一4),若对任意的x都满足f(x)=kf(x+2),其中k为常数。问k为何值时,f(x)在x=0处可导。
已知函数f(x)=。若x→0时,f(x)一a与xk是同阶无穷小,求常数k的值。
求极限。
设四元齐次线性方程组(1)为而已知另一四元齐次线性方程组(2)的一个基础解系为α1=(2,一1,a+2,1)T,α2=(一1,2,4,a+8)T。求方程组(1)的一个基础解系;
设n元线性方程组Ax=b,其中当a为何值时,该方程组有唯一解,并求x1;
设A,B为同阶方阵。当A,B均为实对称矩阵时,证明(I)的逆命题成立。
求数列极限:(Ⅰ)(M>0为常数);(Ⅱ)设数列{xn}有界,求
随机试题
修改病句并说明理由。①这些年轻的科学家决心以无所不为的勇气,克服重重困难,去探索大自然的奥秘。②如果分析什么文章,只有掌握了这种方法,才能迎刃而解。
男性,70岁,进行性排尿困难5年,加重1年,夜尿5~8次,尿线细、尿后滴沥,5年前车祸脑外伤,经神经外科治疗明显改善,无明显后遗症。如果排除病人前列腺癌,最准确的检查方法为
Ph染色体常见于
施工安全管理实施的基本要求包括( )。
财务报表应当根据经过审核的会计账簿记录和其他有关资料进行编制。()
(2015年)下列企业因担保事项涉及诉讼情况的表述,正确的是()。
R图的控制下限()。
一般资料:求助者,男性,30岁,未婚,某传媒公司职员。案例介绍:求助者在公司从事电视节目的编辑和策划工作,饮食、睡眠经常没有规律。随着主管部门政策的调整,某些节目要重新规划和设计,感觉工作压力非常大。近两个月来心情紧张时经常头晕、头痛,原有的胃胀
下列各政权中,曾经与南宋并立的是()。①北宋②辽③金④西夏⑤元朝
2019年1月25日,习近平主持中共中央政治局第十二次集体学习并发表重要讲话,指出:“司法活动要严格遵循司法原则,努力让人民群众在每一个司法案件中都能感受到公平正义。”下列不属于司法原则的有()
最新回复
(
0
)