首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2011年] 设A=[α1,α2,α3,α4]是四阶矩阵,A*为A的伴随矩阵,若[1,0,1,0]T是方程组AX=0的一个基础解系,则A*X=0的基础解系可为( ).
[2011年] 设A=[α1,α2,α3,α4]是四阶矩阵,A*为A的伴随矩阵,若[1,0,1,0]T是方程组AX=0的一个基础解系,则A*X=0的基础解系可为( ).
admin
2019-05-06
53
问题
[2011年] 设A=[α
1
,α
2
,α
3
,α
4
]是四阶矩阵,A
*
为A的伴随矩阵,若[1,0,1,0]
T
是方程组AX=0的一个基础解系,则A
*
X=0的基础解系可为( ).
选项
A、α
1
,α
3
B、α
1
,α
2
C、α
1
,α
2
,α
3
D、α
2
,α
3
,α
4
答案
D
解析
因AX=0的基础解系只含一个解向量[1,0,1,0]
T
,故n一秩(A)=4-秩(A)=1,即秩(A)=3.因而秩(A
*
)=1.于是A
*
X=0的一个基础解系必含n一秩(A
T
)=4—1=3个解向量.这就排除了A、B选项.
因秩(A)=3,故|A|=0,所以A
T
A=|A|E=O.又因秩(A)=3,故A的向量组中含有A
*
X=0的基础解系.
又因[1,0,1,0]
T
为AX=(α
1
,α
2
,α
3
,α
4
)X=0的解向量,故[α
1
,α
2
,α
3
,α
4
][1,0,1,0]
T
=α
1
+α
3
=0,即α
1
与α
3
线性相关,从而排除了C,仅D入选.
转载请注明原文地址:https://kaotiyun.com/show/xt04777K
0
考研数学一
相关试题推荐
设随机变量X的数学期望和方差分别为E(X)=μ.D(X)=σ2,用切比雪夫不等式估计P{|X一μ|<3σ}.
设求.
设n阶矩阵A正定,X=(x1,x2,…,xn)T,证明:二次型为正定二次型.
设总体X在区间[0,θ]上服从均匀分布,X1,X2,…,Xn是取自总体X的简单随机样本,(Ⅰ)求θ的矩估计量和最大似然估计量;(Ⅱ)求常数a,b,使的数学期望均为θ,并求
设有微分方程y’一2y=φ(x),其中φ(x)=试求:在(一∞,+∞)内的连续函数y=y(x),使之在(一∞,1)和(1,+∞)内都满足所给方程,且满足条件y(0)=0.
设A,B都是三阶矩阵,A=,且满足(A*)-1B=ABA+2A2,则B=_______.
有甲、乙两个口袋,两袋中都有3个白球2个黑球,现从甲袋中任取一球放入乙袋,再从乙袋中任取4个球,设4个球中的黑球数用X表示,求X的分布律.
设非负函数f(x)当x≥0时连续可微,且f(0)=1.由y=f(x),x轴,y轴及过点(x,0)且垂直于x轴的直线围成的图形的面积与y=f(x)在[0,x]上弧的长度相等,求f(x).
若事件A1,A2,A3两两独立,则下列结论成立的是().
随机试题
合同履行中止的法律后果,不包括()。
钢板网抹灰顶棚及墙的底层和中层抹灰宜采用下列哪一种?[2001-098]
企业的利得和损失指的是可以直接计入所有者权益的利得和损失。()
关于证券交易结算流程中的清算环节,下列说法正确的是()
能成为中国结算上海分公司的一般结算会员的有()
甲公司系乙公司的母公司,本期甲公司向乙公司销售商品200万元,商品成本为140万元,乙公司购进的该商品当期全部未对外销售而形成期末存货。乙公司期末对存货进行检查时,发现该商品已经部分陈旧,其可变现净值已降至160万元,为此,乙公司期末对该商品计提存货跌价准
苏轼《定风波》原文:莫听穿林打叶声,何妨吟啸且徐行。竹杖芒鞋轻胜马,谁怕?一蓑烟雨任平生。料峭春风吹酒醒,微冷,山头斜照却相迎。回首向来萧瑟处,归去,也无风雨也无晴。课文介绍本科选自某版教材《语文》必修(4)第二单元第五课中《苏轼词两首》中的第二首。
自由落体运动是指物体只在重力作用下从静止开始下落的运动。这种运功只有在真空条件下才能发生,在有空气的时候,如果空气的阻力作用比较小,可以忽略不计,则物体的下落可以近似看作自由落体运动。根据上述定义,可以近似看作自由落体运动的是()
痣样基底细胞癌综合征
Thelatestincatresearchrevealsthatthelovelyanimalseemstohaveabasicgrasponboththelawsofphysicsandtheinsan
最新回复
(
0
)