首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)二阶连续可导,f(0)=1且有f’(x)+3∫0xf’(t)dt+2x∫01f(tx)dt+e-x=0,求f(x).
设函数f(x)二阶连续可导,f(0)=1且有f’(x)+3∫0xf’(t)dt+2x∫01f(tx)dt+e-x=0,求f(x).
admin
2018-05-21
30
问题
设函数f(x)二阶连续可导,f(0)=1且有f’(x)+3∫
0
x
f’(t)dt+2x∫
0
1
f(tx)dt+e
-x
=0,求f(x).
选项
答案
因为x∫
0
1
f(tx)dt=∫
0
x
f(u)du,所以f’(x)+3∫
0
x
f’(t)dt+2x∫
0
1
f(tx)dt+e
-x
=0可 化为f’(x)+3∫
0
x
f’(t)dt+2∫
0
x
f(t)dt+e
-x
=0, 两边对x求导得f"(x)+3f’(x)+2f(x)=e
-x
, 由λ
2
+3λ+2=0得λ
1
=-1,λ
2
=-2, 则方程f"(x)+3f’(x)+2f(x)=0的通解为C
1
e
-x
+C
2
e
-2x
. 令f"(x)+3f’(x)+2f(x)=e
-x
的一个特解为y
0
=axe
-x
,代入得a=1, 则原方程的通解为f(x)=C
1
e
-x
+C
2
e
-2x
+xe
-x
. 由f(0)=1,f’(0)=-1得C
1
=0,C
2
=1,故原方程的解为f(x)=e
-2x
+xe
-x
.
解析
转载请注明原文地址:https://kaotiyun.com/show/K4r4777K
0
考研数学一
相关试题推荐
设f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1。证明存在c∈(0,1),使得f(c)=;
设线性方程组已知(1,一1,1,一1)T。是该方程组的一个解,试求:(Ⅰ)方程组的全部解,并用对应的齐次线性方程组的基础解系表示全部解;(Ⅱ)该方程组满足x2=x3的全部解。
计算曲线积分其中φ(γ)具有连续的导数,曲线Γ为从A(π,2)到jB(3π,4)在直线AB下方的任意路径,该曲线与直线AB所围成的区域面积为2。
设物体在高空中垂直下落,初速度为零,下落过程中所受空气阻力与下落速度的平方成正比,阻力系数k>0。证明下落速度不会超过
设f(x,y)为连续函数,D={(x,y)|x2+y2≤t2},则
若级数发散,则()
设曲线y=y(x)由参数方程x=,y=∫01cos(t—s)2ds确定,则该曲线在t=对应的点处的曲率K=__________.
设S为椭球面+z2=1的上半部分,点P(x,y,z)∈S,∏为S在点P处的切平面,ρ(x,y,z)为点O(0,0,0)到平面∏的距离,求.
(1)验证函数y(x)=(一∞<x<+∞)满足微分方程y"+y’+y=ex.(2)求幂级数y(x)=的和函数.
设A为3阶实对称矩阵,若存在正交矩阵Q,使得QTAQ=,又已知A的伴随矩阵A*有一个特征值为λ=1,相应的特征向量为α=(1,1,1)T.求正交矩阵Q
随机试题
某企业将其生产的高、中、低档服装分别定价为2200元、560元和180元,该企业服装产品的产品组合定价策略为()。
论述纵隔肿瘤诊断方法。
有关牙体形态的生理意义,描述错误的是
患者,女,12岁,主诉:戴矫治器半年后,经常刷牙时牙龈出血。临床检查:前牙唇侧牙龈充血肿胀明显,龈乳头呈球状突起,探诊易出血。下列选项中,哪一项是该病治疗的关键所在
A.外周血白细胞增多B.外周血白细胞不增多C.两者均有D.两者均无慢性白血病可引起()
确定施工机械时间定额时应考虑的时间包括()。
下列选项中,不属于《仲裁法》适用范围的是()。
假设企业按12%的年利率取得贷款200000元,要求在5年内每年末等额偿还,已知(P/A,12%,5)=3.6048,则每年的偿付额应为()元。
某完全二叉树共有256个节点,则该完全二叉树的深度为()。
D从“Therehavebeennocancellationsandnodelaysyet.”可判断D项正确。
最新回复
(
0
)