首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)二阶连续可导,f(0)=1且有f’(x)+3∫0xf’(t)dt+2x∫01f(tx)dt+e-x=0,求f(x).
设函数f(x)二阶连续可导,f(0)=1且有f’(x)+3∫0xf’(t)dt+2x∫01f(tx)dt+e-x=0,求f(x).
admin
2018-05-21
80
问题
设函数f(x)二阶连续可导,f(0)=1且有f’(x)+3∫
0
x
f’(t)dt+2x∫
0
1
f(tx)dt+e
-x
=0,求f(x).
选项
答案
因为x∫
0
1
f(tx)dt=∫
0
x
f(u)du,所以f’(x)+3∫
0
x
f’(t)dt+2x∫
0
1
f(tx)dt+e
-x
=0可 化为f’(x)+3∫
0
x
f’(t)dt+2∫
0
x
f(t)dt+e
-x
=0, 两边对x求导得f"(x)+3f’(x)+2f(x)=e
-x
, 由λ
2
+3λ+2=0得λ
1
=-1,λ
2
=-2, 则方程f"(x)+3f’(x)+2f(x)=0的通解为C
1
e
-x
+C
2
e
-2x
. 令f"(x)+3f’(x)+2f(x)=e
-x
的一个特解为y
0
=axe
-x
,代入得a=1, 则原方程的通解为f(x)=C
1
e
-x
+C
2
e
-2x
+xe
-x
. 由f(0)=1,f’(0)=-1得C
1
=0,C
2
=1,故原方程的解为f(x)=e
-2x
+xe
-x
.
解析
转载请注明原文地址:https://kaotiyun.com/show/K4r4777K
0
考研数学一
相关试题推荐
设二阶常系数线性微分方程y"+αy’+βy=γe2x的一个特解为y=e2x+(1+x)ex,求此方程的通解。
计算曲面积分其中S是球面x2+y2+z2=a2的上半部分与平面z=0所围成的闭曲面外侧。
设S为圆锥面被曲面x2+y2=2ax(a>0)所截下部分,则曲面积分=________。
设向量组α1,α2,α3线性无关,则下列向量组中线性无关向量组是()。
设A是5×4矩阵,A=(α1,α2,α3,α4),若η1=(1,1,一2,1)T,η2=(0,1,0,1)T是Ax=0的基础解系,则A的列向量的极大线性无关组是()
设f(u)有连续的二阶导数,且z=f(exsiny)满足方程
设曲线y=y(x)由参数方程x=,y=∫01cos(t—s)2ds确定,则该曲线在t=对应的点处的曲率K=__________.
设f(x)在[a,b]上有二阶连续导数,证明∫abf(x)dx=∫abf"(x)(x一a)(x一b)dx.
设总体x的概率密度为f(x)=其中θ(0
在一个盒子中放有10个乒乓球,其中8个是新球,2个是用过的球.在第一次比赛时,从该盒子中任取2个乒乓球,比赛后仍放回盒子中.在第二次比赛时从这个盒子中任取3个乒乓球,则第二次取出的都是新球的概率为___________.
随机试题
现阶段与按劳分配并存的多种分配方式有()
男,20岁,神志不清2h入院,既往患1型糖尿病5年,长期皮下注射胰岛素。近3天因腹泻而停用。体检:血压70/50mmHg,皮肤中度失水征,呼吸深大,有烂苹果味,心率130次/分。最可能与诊断无关的检查是
A.疏肝理气,活血化瘀B.清热利湿,解毒破结C.养阴清热,解毒祛瘀D.理气化痰,消食散结E.温中散寒,健脾调胃治疗肝癌湿热瘀毒证,应首选
肝阳上亢所致眩晕宜取肝阳上亢所致头痛宜取
栀子具有的功效是
(2007)下图中哪种空调系统的设置合理?
导致成本失控的原因有()。
《企业会计制度》规定,()可以计提坏账准备。
商业银行要求个人贷款客户至少需要满足的条件有()。
在贷款分类中,挪用的贷款至少被分为()
最新回复
(
0
)