首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,1]可导,0<f’(x)<1,0<f(x)<1,且F(x)=1/2[x+f(x)]。 设x0∈(0,1),xn+1=F(xn)(n=0,1,2,…),证明:
设f(x)在[0,1]可导,0<f’(x)<1,0<f(x)<1,且F(x)=1/2[x+f(x)]。 设x0∈(0,1),xn+1=F(xn)(n=0,1,2,…),证明:
admin
2021-12-14
92
问题
设f(x)在[0,1]可导,0<f’(x)<1,0<f(x)<1,且F(x)=1/2[x+f(x)]。
设x
0
∈(0,1),x
n+1
=F(x
n
)(n=0,1,2,…),证明:
选项
答案
由已知,x
n+1
=F(x
n
)=1/2[x
n
+f(x
n
)],当n≥1时,有x
n+1
-x
n
=F(x
n
)-F(x
n-1
)=F’(ξ
n
)(x
n
-x
n-1
),其中ξ
n
介于x
n
与x
n-1
之间,又因为F’(ξ
n
)=1/2[1+f’(ξ
n
)]>0,所以x
n+1
-x
n
与x
n
-x
n-1
同号,故{x
n
}单调。由已知,0<x
0
<1,利用归纳法,设0<x
n
<1,则0<x
n+1
=F(x
n
)=1/2[x
n
+f(x
n
)]<1,故{x
n
}有界,由单调有界准则,可知[*]存在。令[*]=a,则a=F(a),a=ξ,故[*]=ξ。
解析
转载请注明原文地址:https://kaotiyun.com/show/xzf4777K
0
考研数学二
相关试题推荐
[*]
设A为n阶实对称正交矩阵,且1为A的r重特征根,则|3E-A|=__________。
设A为四阶实对称矩阵,且A2+2A一3E=O,若r(A—E)=1,则二次型xTAx在正交变换下的标准形为()
设A是n阶矩阵,下列结论正确的是().
设α1,α2,α3,α4是四维非零列向量组,A=(α1,α2,α3,α4),A*为A的伴随矩阵。已知方程组Ax=0的基础解系为k(1,0,2,0)T,则A*x=0的基础解系为()
曲线上t=1对应的点处的曲率半径为().
设f(x)在(0,+∞)二阶可导,且满足f(0)=0,f’’(x)<0(x>0),又设b>a>0,则a<x<b时恒有()
设Φ1(x),Φ2(x),Φ3(x)为二阶非齐次线性方程y"+a1(x)y’+a2(x)y=f(x)的三个线性无关解,则该方程的通解为()。
设f(x)和φ(x)在(一∞,+∞)上有定义,f(x)为连续函数,且f(x)≠0,φ(x)有间断点,则()
数列1,,…的最大项为_______.
随机试题
合谷穴主治包括()。
《摸鱼儿》下片所借用的典故有
使原系统的变化率减小,使系统接近平衡态的反馈是______反馈。
女,19岁。因发热倦头痛、烦躁2天,于1月28日入院。查体:血压130/80mmHg,精神差,神志清楚,全身散在瘀点、瘀斑,颈抵抗阳性,Kernig征及Babinski征均阳性。实验室检查:腰穿脑脊液压力240mmH2O,外观混浊,WBCl200×106/
试述合同保全中的代位权。[中山大学2017年研]
公路建设必须招标的项目有()。
依据《中华人民共和国循环经济促进法》中的“循环经济”是指在()等过程中进行的减量化、再利用资源化活动的总称。
A储运公司仓储区占地面积为90000m2,共有8个库房,原用于存放一般货物。3年前,该储运公司未经任何技术改造和审批,擅自将1号、4号和6号库房改存危险化学品。2016年3月14日12时18分,仓储区4号库房内首先发生爆炸,12min后,6号库房也发生
下列关于刑事拘留的表述,正确的是()。
求
最新回复
(
0
)