首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设y=f(x)为区间[0,1]上的非负连续函数. (1)证明:存在c∈(0,1),使得在区间[0,c]上以f(c)为高的矩形面积等于区间[c,1]上以y=f(x)为曲边的曲边梯形的面积; (2)设f(x)在(0,1)内可导,且f’(x)>,
设y=f(x)为区间[0,1]上的非负连续函数. (1)证明:存在c∈(0,1),使得在区间[0,c]上以f(c)为高的矩形面积等于区间[c,1]上以y=f(x)为曲边的曲边梯形的面积; (2)设f(x)在(0,1)内可导,且f’(x)>,
admin
2019-08-23
33
问题
设y=f(x)为区间[0,1]上的非负连续函数.
(1)证明:存在c∈(0,1),使得在区间[0,c]上以f(c)为高的矩形面积等于区间[c,1]上以y=f(x)为曲边的曲边梯形的面积;
(2)设f(x)在(0,1)内可导,且f’(x)>
,证明:(1)中的c是唯一的.
选项
答案
(1)S
1
(c)=cf(c),S
2
(c)=∫
c
1
f(t)dt=一∫
1
c
f(t)dt,即证明S
1
(c)=S
2
(c),或cf(c)+∫
1
c
f(t)dt=0.令φ(x)=x∫
1
x
f(t)dt,φ(0)=φ(1)=0,根据罗尔定理,存在c∈(0,1),使得φ’(c)=0,即cf(c)+∫
1
c
f(t)dt=0,所以S
1
(c)=S
2
(c),命题得证. (2)令h(x)=xf(x)一∫
x
1
f(t)dt,因为h’(x)=2f(x)+xf’(x)>0,所以h(x)在[0,1]上为单调函数,所以(1)中的c是唯一的.
解析
转载请注明原文地址:https://kaotiyun.com/show/y4c4777K
0
考研数学一
相关试题推荐
设f(x)在[a,b]上二阶可导,f(a)=f(b)=0。试证明至少存在一点ξ∈(a,b),使
设有一小山,取它的底面所在的平面为xDy坐标面,其底部所占的区域为D={(x,y)|x2+y2一xy≤75},小山的高度函数为h(x,y)=75—x2—y2+xy。现欲利用此小山开展攀岩活动,为此需要在山脚下寻找一坡度最大的点作为攀登的起点。也就是说,
试确定常数a与b,使得经变换u=x+ay,v=x+6y,可将方程(其中z具有二阶连续偏导数),并求z=z(x+ay,x+by)。
根据以往经验,某种电器元件的寿命服从均值为100小时的指数分布。现随机地取16只,设它们的寿命是相互独立的。求这16只元件的寿命的总和大于1920小时的概率。
求由曲线y=与直线y=a(0<a<1)以及x=0,x=1围成的平面图形(如图1-3-3的阴影部分)绕x轴旋转一周所成的旋转体的体积V(a)。
已知随机变量Y服从[0,5]上的均匀分布,则关于x的一元二次方程4x2+4Yx+Y+2=0有实根的概率P=________。
设函数Q(x,y)在平面xOy上具有一阶连续偏导数,曲线积分与路径无关,并且对任意t恒有∫(0,0)(t,1)2xydx+Q(x,y)dy=∫(0,0)(1,t)2xydx+Q(x,y)dy,求Q(x,y)。
直线的夹角为_______。
设曲线y=y(x)满足xdy+(x—2y)dx=0,且y=y(x)与直线x=1及x轴所围的平面图形绕x轴旋转的旋转体体积最小,则y(x)=()
随机试题
决定新闻单位效率的重要因素是()
就物质的反映特性而言( )
关于闭合性肝外伤的声像图特征叙述,正确的是
何谓大量咯血
下列关于国际银团贷款的表述,说法正确的有:
某企业2011年12月31日银行存款日记账余额为10万元,经查无记账差错,但发现:(1)企业期末计提了12月1日至31日的定期存款利息2万元;(2)银行支付了水电费5万元,但企业尚未入账;(3)企业已转账支付购买办公用品款1万元,但银行尚未入账。则该企业1
根据下表,回答96-100题。2006-2008年间,表中港口有几个在7月出现过货运吞吐量比上年同期下降的局面?
思想道德和法律都是调解人们思想行为、协调人际关系、维护社会秩序的重要手段。两者的关系是()
Thepassingtravellersaid,"Whateveryouplease."itmeant(意指,意味着)Whichofthefollowingistrue?
PassageThree(1)Arecomfortshoesalwaysmorehealthful?Notnecessarily,accordingtosomefootdoctors.Buyingshoesfr
最新回复
(
0
)