首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[a,b]上二阶可导,f(a)=f(b)=0。试证明至少存在一点ξ∈(a,b),使
设f(x)在[a,b]上二阶可导,f(a)=f(b)=0。试证明至少存在一点ξ∈(a,b),使
admin
2018-12-29
57
问题
设f(x)在[a,b]上二阶可导,f(a)=f(b)=0。试证明至少存在一点ξ∈(a,b),使
选项
答案
(1)若f(x)[*] 0,则结论显然成立; (2)设|f(x
0
)|=[*],x
0
∈(a,b),即函数f(x)在x=x
0
处取得最大值。又因为f(x)在[a,b]上二阶可导,则有f′(x
0
)=0。将函数f(x)在x=x
0
处展成带有拉格朗日余项的二阶泰勒展开式,即 f(x)=f(x
0
)+f′(x
0
)(x—x
0
)+[*](x—x
0
)
2
,η=x
0
+θ(x—x
0
),0<θ<1。 由于f(a)=0,故将x=a代入上式可得 0=f(a)=f(x
0
)+f′(x
0
)(a—x
0
)+[*](a—x
0
)
2
, 即 [*],a<ξ
1
<x
0
。 同理,有 [*],x
0
<ξ
2
<b。 令[*],则 [*] 上式中[*],当且仅当x
0
=[*]时,等号成立。 故至少在一点ξ∈(a,b)使|f″(ξ)|≥[*]。
解析
转载请注明原文地址:https://kaotiyun.com/show/PUM4777K
0
考研数学一
相关试题推荐
(97年)设f(x)连续,φ(x)=∫01f(xt)dt,且=A(A为常数),求φ’(x)并讨论φ’(x)在x=0处的连续性.
(87年)由曲线y=lnx与两直线y=(e+1)一x及y=0所围成的平面图形的面积是_______.
(16年)设函数y(x)满足方程y"+2y’+ky=0,其中0<k<1.(I)证明:反常积分∫0+∞y(x)dx收敛;(Ⅱ)若y(0)=1,y’(0)=1,求∫0+∞y(x)dx的值.
设α>0,β>0为任意正数,当x→+∞时将无穷小量:,e-x按从低阶到高阶的顺序排列.
坐标xOy平面上有一力场F,在点P(x,y)处力F(x,y)的大小为P点到原点O的距离,方向为P点矢径逆时针旋转要,求质点沿下列曲线由点A(a,0)移到点B(0,a)时力F所做的功W:(1)C1:圆周x2+y2=a2在第一象限内的弧.(
设向量α1=(1,-1,2,-1)T,α2=(-3,4,-1,2)T,α3=(4,-5,3,-3)T,α4=(-1,A,3,0)T,β=(0,k,5,-1)T.试问λ,K取何值时,β不能由α1,α2,α3,α4线性表出?λ,K取何值时,β可由α1,α2,α
求函数f(x)=∫0x2(2一t)e-tdt的最大值与最小值.
求函数Y=(X一1)的单调区间与极值,并求该曲线的渐近线.
设f(x)在x=x0的邻域内连续,在x=x0的去心邻域内可导,且f’(x)=M.证明:f’(x0)=M.
设f(x,y)=2(y-x2)2-x7-y2.(Ⅰ)求f(x,y)的驻点;(Ⅱ)求f(x,y)的全部极值点,并指明是极大值点还是极小值点.
随机试题
A.3天B.3~7天C.14天D.半年治疗反复复发的尿感的疗程一般为
粘液表皮样癌的细胞组成是
小儿结核病最严重的播散方式是
ICC条款中的B险相当于CIC条款中的()。
《资格证书》持有人应当在《资格证书》有效期届满( )前向中国保监会申请换发。
商业银行获得个人客户信用记录的途径不包括()。
下列各项中,适用5%~35%的超额累进税率计征个人所得税的有()。
下列信用形式中,属于直接信用的有()。
从公司理财的角度看,与长期借款筹资相比较,普通股筹资的优点是()。
A、 B、 C、 D、 B
最新回复
(
0
)