首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x),g(x)在[a,b]上连续,在(a,b)内具有二阶导数且存在相等的最大值f(a)=g(a),f(b)=g(b),证明存在ξ∈(a,b),使得f″(ξ)=g″(ξ)。
设函数f(x),g(x)在[a,b]上连续,在(a,b)内具有二阶导数且存在相等的最大值f(a)=g(a),f(b)=g(b),证明存在ξ∈(a,b),使得f″(ξ)=g″(ξ)。
admin
2018-12-29
78
问题
设函数f(x),g(x)在[a,b]上连续,在(a,b)内具有二阶导数且存在相等的最大值f(a)=g(a),f(b)=g(b),证明存在ξ∈(a,b),使得f″(ξ)=g″(ξ)。
选项
答案
构造辅助函数F(x)=f(x)—g(x),由题设有F(a)=F(b)=0。又f(x),g(x)在(a,b)内具有相等的最大值,不妨设存在x
1
≤x
2
,x
1
,x
2
∈(a,b)使得 f(x
1
)=M=[*],g(x
2
)=M=[*]。 若x
1
=x
2
,令C=x
1
,则F(c)=0。 若x
1
<x
2
,因F(x
1
)=f(x
1
)—g(x
1
)≥0,F(x
2
)=f(x
2
)—g(x
2
)≤0,从而存在c∈[x
1
,x
2
][*](a,b),使F(c)=0。 在区间[a,c],[c,b]上分别利用罗尔定理知,存在ξ
1
∈(a,c),ξ
2
∈(c,b),使得 f′(ξ
1
)=f′(ξ
2
)=0, 再对f′(x)在区间[ξ
1
,ξ
2
]上应用罗尔定理,知存在ξ∈(ξ
1
,ξ
2
)[*](a,b),使f″(ξ)=0,即 f″(ξ)=g″(ξ)。
解析
转载请注明原文地址:https://kaotiyun.com/show/DUM4777K
0
考研数学一
相关试题推荐
(90年)设函数f(x)=则f[f(x)]=_______.
(08年)求极限
(99年)
(97年)设直线l:在平面π上,而平面π与曲面z=x2+y2相切于点(1,一2,5),求a,b之值.
(00年)曲面x2+2y2+3z2=21在点(1,一2,2)处的法线方程为________.
(16年)设函数y(x)满足方程y"+2y’+ky=0,其中0<k<1.(I)证明:反常积分∫0+∞y(x)dx收敛;(Ⅱ)若y(0)=1,y’(0)=1,求∫0+∞y(x)dx的值.
已知f(x)连续,且x∫02xf(t)dt+2∫x0tf(2t)dt=2x3(x-1),求f(x)在[0,2]上的最大值和最小值.
设又a≠0,问a为何值时f(x)存在.
f(x,y,z)dy,变成由z至y再至x的顺序.
设f(x,y)在点(a,b)的某邻域具有二阶连续偏导数,且f’y(a,b)≠0,证明由方程f(x,y)=0在x=a的某邻域所确定的隐函数y=φ(x)在x=a处取得极值=φ(a)的必要条件是:f(a,b)=0,f’x(a,b)=0,且当r(a,b)>0时,
随机试题
某些政策发生变动的直接原因是()
在第一象限内求曲线y=一x2+1上的一点,使该点处的切线与所给的曲线及两坐标轴所围成的平面图形面积最小,并求此最小面积.
含铁血黄素颗粒可见于尿中何种细胞
41岁病人,男性,肝硬化病史10年,近来自觉全身乏力,食欲不振,且黄疸进行性加重。肝硬化病人出现黄疸,提示()
新生仔畜窒息可选用
营养性缺铁性贫血的预防措施是
消化系统是保证人体新陈代谢正常进行的一个重要系统.是由消化管和消化腺两大部分组成,下列器官或腺体不属于消化系统的是()。
上海市有些经理人员获得了MBA学位。因此,有些理科背景的大学毕业生取得了MBA学位。以下哪一项为真,最能保证上述论证的成立?
Writeanessayof160~200wordsbasedonthefollowingpicture.Inyourwriting,youshould1)describethedrawingbriefly,2)
A、Itisaboutthesizeofanegg.B、Itiswithabrownskin.C、Itisfullofyellowseeds.D、Itisaboutthesizeofanorange.
最新回复
(
0
)