首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x),g(x)在[a,b]上连续,在(a,b)内具有二阶导数且存在相等的最大值f(a)=g(a),f(b)=g(b),证明存在ξ∈(a,b),使得f″(ξ)=g″(ξ)。
设函数f(x),g(x)在[a,b]上连续,在(a,b)内具有二阶导数且存在相等的最大值f(a)=g(a),f(b)=g(b),证明存在ξ∈(a,b),使得f″(ξ)=g″(ξ)。
admin
2018-12-29
48
问题
设函数f(x),g(x)在[a,b]上连续,在(a,b)内具有二阶导数且存在相等的最大值f(a)=g(a),f(b)=g(b),证明存在ξ∈(a,b),使得f″(ξ)=g″(ξ)。
选项
答案
构造辅助函数F(x)=f(x)—g(x),由题设有F(a)=F(b)=0。又f(x),g(x)在(a,b)内具有相等的最大值,不妨设存在x
1
≤x
2
,x
1
,x
2
∈(a,b)使得 f(x
1
)=M=[*],g(x
2
)=M=[*]。 若x
1
=x
2
,令C=x
1
,则F(c)=0。 若x
1
<x
2
,因F(x
1
)=f(x
1
)—g(x
1
)≥0,F(x
2
)=f(x
2
)—g(x
2
)≤0,从而存在c∈[x
1
,x
2
][*](a,b),使F(c)=0。 在区间[a,c],[c,b]上分别利用罗尔定理知,存在ξ
1
∈(a,c),ξ
2
∈(c,b),使得 f′(ξ
1
)=f′(ξ
2
)=0, 再对f′(x)在区间[ξ
1
,ξ
2
]上应用罗尔定理,知存在ξ∈(ξ
1
,ξ
2
)[*](a,b),使f″(ξ)=0,即 f″(ξ)=g″(ξ)。
解析
转载请注明原文地址:https://kaotiyun.com/show/DUM4777K
0
考研数学一
相关试题推荐
(97年)设F(x)=∫xx+2πesintsintdt,则F(x)
(90年)求
(95年)设有直线L:及平面π:4x一2y+z一2=0,则直线L
已知{an)是单调增加且有界的正数列,证明:级数收敛.
设不恒为常数的函数f(x)在[a,b]上连续,在(a,b)内二阶可导,且f(a)=f(c)=f(b).其中c为(a,b)内的一点,试证:存在点ξ∈(a,b),使得f’’(ξ)
函数μ=x2-2yz在点(1,一2,2)处的方向导数最大值为_________.
设f(x)在x=x0的邻域内连续,在x=x0的去心邻域内可导,且f’(x)=M.证明:f’(x0)=M.
证明:当x≥0时,f(x)=∫0x(t-t2)sin2ntdt的最大值不超过·
设f(x,y)=2(y-x2)2-x7-y2.(Ⅰ)求f(x,y)的驻点;(Ⅱ)求f(x,y)的全部极值点,并指明是极大值点还是极小值点.
设z=z(x,y)是由9x2一54xy+90y2一6yz一z2+18=0确定的函数,(Ⅰ)求证z=z(x,y)一阶偏导数并求驻点;(Ⅱ)求z=z(x,y)的极值点和极值.
随机试题
人民法院、人民检察院和公安机关对于符合逮捕条件,有下列哪些情形的犯罪嫌疑人、被告人。可以监视居住?()
张老师在使用word编制试卷时,需要将试卷中所有的“不正确”三个字都加上着重号。若要批量完成这个任务,可使用Word软件中的()。
__________是TCP/IP簇网络层的核心,是Internet能够有效运行的基础。
女性,56岁。慢性肝炎病史20年患者。双上肢皮肤可见小动脉末端分支性扩张形成的血管痣,大小约2cm。应诊断为
下列属于钢筋连接方法的是()。
下列关于小导管注浆支护设计的要求中,正确的有()。
下列各项不属于物流基本功能的是()。
设f(x)在(一∞,+∞)上有定义,x0≠0为函数f(x)的极大值点,则().
关于无线微波扩频技术,以下______是错误的。
Manyphrasesusedtodescribemonetarypolicy,suchas"steeringtheeconomytoasoftlanding"or"atouchonthebrakes",mak
最新回复
(
0
)