首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x),g(x)在[a,b]上连续,在(a,b)内具有二阶导数且存在相等的最大值f(a)=g(a),f(b)=g(b),证明存在ξ∈(a,b),使得f″(ξ)=g″(ξ)。
设函数f(x),g(x)在[a,b]上连续,在(a,b)内具有二阶导数且存在相等的最大值f(a)=g(a),f(b)=g(b),证明存在ξ∈(a,b),使得f″(ξ)=g″(ξ)。
admin
2018-12-29
92
问题
设函数f(x),g(x)在[a,b]上连续,在(a,b)内具有二阶导数且存在相等的最大值f(a)=g(a),f(b)=g(b),证明存在ξ∈(a,b),使得f″(ξ)=g″(ξ)。
选项
答案
构造辅助函数F(x)=f(x)—g(x),由题设有F(a)=F(b)=0。又f(x),g(x)在(a,b)内具有相等的最大值,不妨设存在x
1
≤x
2
,x
1
,x
2
∈(a,b)使得 f(x
1
)=M=[*],g(x
2
)=M=[*]。 若x
1
=x
2
,令C=x
1
,则F(c)=0。 若x
1
<x
2
,因F(x
1
)=f(x
1
)—g(x
1
)≥0,F(x
2
)=f(x
2
)—g(x
2
)≤0,从而存在c∈[x
1
,x
2
][*](a,b),使F(c)=0。 在区间[a,c],[c,b]上分别利用罗尔定理知,存在ξ
1
∈(a,c),ξ
2
∈(c,b),使得 f′(ξ
1
)=f′(ξ
2
)=0, 再对f′(x)在区间[ξ
1
,ξ
2
]上应用罗尔定理,知存在ξ∈(ξ
1
,ξ
2
)[*](a,b),使f″(ξ)=0,即 f″(ξ)=g″(ξ)。
解析
转载请注明原文地址:https://kaotiyun.com/show/DUM4777K
0
考研数学一
相关试题推荐
(08年)设f(x)是连续函数,(I)利用定义证明函数F(x)=∫0xf(t)dt可导,且F’(x)=f(x);(Ⅱ)当f(x)是以2为周期的周期函数时,证明函数G(x)=2∫0xf(t)dt一x∫02f(t)dt也是以2为周期的周期函数.
(01年)
(88年)设f(x)是连续函数,且f(t)dt=x,则f(7)=________.
(87年)由曲线y=lnx与两直线y=(e+1)一x及y=0所围成的平面图形的面积是_______.
(91年)设n是曲面2x2+3y2+z2=6在点P(1,1,1)处的指向外侧的法向量,求函数u=在点P处沿方向n的方向导数.
(01年)设函数z=f(x,y)在点(1,1)处可微,且f(1,1)=1,φ(x)=f(x,f(x,x)).求
(95年)设u=f(x,y,z),φ(x2,ey,z)=0,y=sinx,其中f,φ都具有一阶连续偏导数,且
(97年)设则3条直线a1x+b1y+c1=0,a2x+b2y+c2=0,a3x+b3y+c3=0(其中ai2+bi2≠0,i=1,2,3)交于一点的充要条件是
设f(x)在x=x0的邻域内连续,在x=x0的去心邻域内可导,且.证明:f’(x0)=M.
设f(x)在x=x0的邻域内连续,在x=x0的去心邻域内可导,且f’(x)=M.证明:f’(x0)=M.
随机试题
画出图Ⅱ-15所示三相变压器的位形图,并判断其连接组别。
劳神过度易损伤的内脏是
关于儿童颌骨骨折的治疗,哪项是错误的
患者,女,45岁,食欲不振数日,症见嗳气吞酸、腹胀泄泻,证属脾胃虚弱、中气不和,治当健脾和胃,宜选用的中成药是
对使用新能源车船、节约能源车船的,免征车船税。()
以美国教育家杜威为代表的现代教育派倡导的“三中心”是()。
正如党的十七大报告所总结的:“改革开放不是一蹴而就的”,改革开放不是一次轻松浪漫的旅行,而是一次决定中华民族历史命运的伟大远航,它有___________的时刻,也时常充满惊涛骇浪。填入画横线部分最恰当的一项是()。
Swisswatchmakershavefirmlyestablishedthemselvesastheworld’sleadingwatchmakersoverthepastthreecenturies.Withare
Amajorreasonforconflictintheanimalworldisterritory.Themaleanimal【C1】______anarea.Thesizeoftheareais【C2】____
ItisknowntousthatEnglishisnotasoldasChinese,butitiswidelyusedbymostpeopleallovertheworld.Englishspeake
最新回复
(
0
)