首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(2000年)设函数f(x)在[0.π]上连续.且试证:在(0,π)内至少存在两个不同的点ξ1和ξ2,使f(ξ1)=f(ξ2)=0.
(2000年)设函数f(x)在[0.π]上连续.且试证:在(0,π)内至少存在两个不同的点ξ1和ξ2,使f(ξ1)=f(ξ2)=0.
admin
2018-07-01
62
问题
(2000年)设函数f(x)在[0.π]上连续.且
试证:在(0,π)内至少存在两个不同的点ξ
1
和ξ
2
,使f(ξ
1
)=f(ξ
2
)=0.
选项
答案
证1 令[*] 则F(0)=F(x)=0 又 [*] 所以存在ξ∈(0,π),使F(ξ)sinξ=0,因若不然,则在(0,π)内或F(x)sinx恒为正,或F(x)sinx恒为负,均与[*]矛盾.但当ξ∈(0,π)时,sinξ≠0,故F(ξ)=0. 由此证得F(0)=F(ξ)=F(π)=0 (0<ξ<π) 再对F(x)在[0,ξ]和[ξ,π]上分别应用罗尔中值定理,知至少存在ξ
1
∈(0,ξ),ξ
2
∈(ξ,π),使 F’(ξ
1
)=F’(ξ
2
)=0 即 f(ξ
1
)=f(ξ
2
)=0 证2 由[*]及f(x)的连续性可知,存在ξ
1
∈(0,π),使f(ξ
1
)=0.因若不然,则在(0,π)内或f(x)恒为正,或f(x)恒为负,均与[*]矛盾. 若在(0,π)内f(x)=0仅有一个实根x=ξ
1
,则由[*]推知,f(x)在(0,ξ
1
)内与(ξ
1
,π)内异号,不妨设在(0,ξ
1
)内f(x)>0,在(ξ
1
,π)内f(x)<0.于是再由[*]及cosx在[0,π]上的单调性知 [*] 得出矛盾.从而推知,在(0,π)内除ξ
1
外,f(x)=0至少还有另一实根ξ
2
,故知存在ξ
1
,ξ
2
∈(0,π),ξ
1
≠ξ
2
,使f(ξ
1
)=f(ξ
2
)=0.
解析
构造函数
显然F’(x)=f(x).若能证明F(x)在[0,π]上有三个零点,由罗尔定理可知在(0,π)上至少存在两个不同的点ξ
1
,ξ
2
,使F’(ξ
1
)=F’(ξ
2
)=0,即f(ξ
1
)=f(ξ
2
)=0.而F(0)=0,F(π)=0,所以只要证在(0,π)内至少还有F(x)的一个零点即可.
转载请注明原文地址:https://kaotiyun.com/show/yCg4777K
0
考研数学一
相关试题推荐
设f(x)为连续函数,证明:
设f(x)∈C[a,b],在(a,b)内二阶可导,且f"(x)≥0,φ(x)是区间[a,b]上的非负连续函数,且∫abφ(x)dx=1.证明:∫abf(x)φ(x)dx≥f[∫abxφ(x)dx].
(87年)设则在x=a处
(2015年)设D是第一象限中由曲线2xy=1,4xy=1与直线y=x,围成的平面区域,函数f(x,y)在D上连续,则
(2015年)(I)设函数u(x),v(x)可导,利用导数定义证明[u(x)v(x)]’=u’(x)v(x)+u(x)v’(x);(Ⅱ)设函数u1(x),u2(x),…,un(x)可导,f(x)=u1(x)u2(x)…un(x),写出f(x)的求
(1991年)设则
(1997年)设f(x)连续,且(A为常数),求φ’(x)并讨论φ’(x)在x=0处的连续性.
(2010年)设函数z=z(x,y)由方程确定,其中F为可微函数,且F’2≠0,则
(1993年)设物体A从点(0,1)出发,以速度大小为常数v沿y轴正向运动,物体B从点(一1,0)与A同时出发,其速度大小为2v,方向始终指向A.试建立物体B的运动轨迹所满足的微分方程,并写出初始条件.
(1993年)计算其中∑是由曲面所围立体表面的外侧.
随机试题
英语名词bike(自行车)原来的形式是bicycle,这在词的形成方式上属于
下列肾小球肾炎临床上常不表现为肾病综合征的是
寻找弥漫性腹膜炎的病因,最有参考价值的体征是老年人腹膜炎的重要体征是
A.辛温解表,宣肺散寒B.辛凉解表,宣肺清热C.解表清里,宣肺疏风D.益气解表E.滋阴解表
在绘制网络图时,表示箭线交叉的方法有()。
我国《企业会计准则》规定,会计的()应当以权责发生制为记账基础。
根据我国法律制度的规定,下列各项中,能够成为法律关系主体的有()。
在地理教学过程中,为修正地理教学活动本身的轨道,使教与学获得更佳效果所进行的评价称为()。
在下列文件的物理结构中,()不利于文件长度的动态增长。
Shootingmoltenrockmorethan500metersintotheair,Etnasentstreamsoflavarushingdownitsnortheasternandsouthernfla
最新回复
(
0
)