首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(2000年)设函数f(x)在[0.π]上连续.且试证:在(0,π)内至少存在两个不同的点ξ1和ξ2,使f(ξ1)=f(ξ2)=0.
(2000年)设函数f(x)在[0.π]上连续.且试证:在(0,π)内至少存在两个不同的点ξ1和ξ2,使f(ξ1)=f(ξ2)=0.
admin
2018-07-01
43
问题
(2000年)设函数f(x)在[0.π]上连续.且
试证:在(0,π)内至少存在两个不同的点ξ
1
和ξ
2
,使f(ξ
1
)=f(ξ
2
)=0.
选项
答案
证1 令[*] 则F(0)=F(x)=0 又 [*] 所以存在ξ∈(0,π),使F(ξ)sinξ=0,因若不然,则在(0,π)内或F(x)sinx恒为正,或F(x)sinx恒为负,均与[*]矛盾.但当ξ∈(0,π)时,sinξ≠0,故F(ξ)=0. 由此证得F(0)=F(ξ)=F(π)=0 (0<ξ<π) 再对F(x)在[0,ξ]和[ξ,π]上分别应用罗尔中值定理,知至少存在ξ
1
∈(0,ξ),ξ
2
∈(ξ,π),使 F’(ξ
1
)=F’(ξ
2
)=0 即 f(ξ
1
)=f(ξ
2
)=0 证2 由[*]及f(x)的连续性可知,存在ξ
1
∈(0,π),使f(ξ
1
)=0.因若不然,则在(0,π)内或f(x)恒为正,或f(x)恒为负,均与[*]矛盾. 若在(0,π)内f(x)=0仅有一个实根x=ξ
1
,则由[*]推知,f(x)在(0,ξ
1
)内与(ξ
1
,π)内异号,不妨设在(0,ξ
1
)内f(x)>0,在(ξ
1
,π)内f(x)<0.于是再由[*]及cosx在[0,π]上的单调性知 [*] 得出矛盾.从而推知,在(0,π)内除ξ
1
外,f(x)=0至少还有另一实根ξ
2
,故知存在ξ
1
,ξ
2
∈(0,π),ξ
1
≠ξ
2
,使f(ξ
1
)=f(ξ
2
)=0.
解析
构造函数
显然F’(x)=f(x).若能证明F(x)在[0,π]上有三个零点,由罗尔定理可知在(0,π)上至少存在两个不同的点ξ
1
,ξ
2
,使F’(ξ
1
)=F’(ξ
2
)=0,即f(ξ
1
)=f(ξ
2
)=0.而F(0)=0,F(π)=0,所以只要证在(0,π)内至少还有F(x)的一个零点即可.
转载请注明原文地址:https://kaotiyun.com/show/yCg4777K
0
考研数学一
相关试题推荐
设φ(y)为连续函数.如果在围绕原点的任意一条逐段光滑的正向简单封闭曲线l上,曲线积分其值与具体l无关,为同一常数k.证明:对于任意一条逐段光滑的简单封闭曲线L,它不围绕原点也不经过原点,则必有且其逆亦成立,即若式②成立,则式①亦成立.
计算,其中Ω为平面曲线绕z轴旋转一周形成的曲面与平面z=8所围成的区域.
(2014年)设f(x,y)是连续函数,则
(2014年)若函数则a1cosx+b1sinx=()
设求实对称矩阵B,使A=B2.
(1994年)计算曲面积分其中S是由曲面x2+y2=R2及两平面z=R.z=一R(R>0)所围成立体表面的外侧.
(2001年)设则
(2014年)设f(x,y)是连续函数,则
[2002年]设f(x)在(一∞,+∞)上有一阶连续导数,L是上半平面(y>0)内的有向分段光滑曲线,其起点为(a,b),终点为(c,d).记证明曲线积分I与路径无关;
(2010年)设m,n为正整数,则反常积分的收敛性()
随机试题
在自然光线下,瞳孔直径约为
未婚女性,20岁。主诉经期腹痛剧烈,于月经来潮时需服镇痛药并卧床休息。平时月经周期规律,基础体温呈双相。肛门检查:子宫前倾前屈、稍小、硬度正常,无压痛,两侧附件(一),分泌物白色透明。本病例最可能的诊断是
以下哪项是藿香具有的药理作用( )。
威灵仙的功效
论述事实认识错误及其对刑事责任的影响。
在环境噪声评价量中“LWECPN”符号表示()。
期货投资者保障基金由中国证监会集中管理,统筹使用。()[2013年3月真题]
三元线性方程组Ax=6的系数矩阵A的秩r(A)=2,且x1=(4,1,-2)T,x2=(2,2,-1)T,x3=(0,3,a)T均为Ax=b的解向量,则A=().
有以下程序#includemain(){intk=5;while(--k)printf("%d",k-=3);printf("\n");}执行后的输出结果是()。
Judyworksinasportsshop.Shelovesallkindsofsports.Shecanswimandskateverywell.Sheoftenplaysbasketballandvol
最新回复
(
0
)