首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在闭区间[0,c]上连续,其导数f’(x)在开区间(0,c)内存在且单调减少,f(0)=0.试应用拉格朗日中值定理证明: f(a+b)≤f(a)+f(b), 其中常数a,b满足条件0≤a≤b≤a+b≤c.
设f(x)在闭区间[0,c]上连续,其导数f’(x)在开区间(0,c)内存在且单调减少,f(0)=0.试应用拉格朗日中值定理证明: f(a+b)≤f(a)+f(b), 其中常数a,b满足条件0≤a≤b≤a+b≤c.
admin
2018-11-11
101
问题
设f(x)在闭区间[0,c]上连续,其导数f’(x)在开区间(0,c)内存在且单调减少,f(0)=0.试应用拉格朗日中值定理证明:
f(a+b)≤f(a)+f(b),
其中常数a,b满足条件0≤a≤b≤a+b≤c.
选项
答案
用拉格朗日中值定理. 当a=0时,等号成立. 当a>0时,由于f(x)在区间[0,a]及[b,a+b]上满足拉格朗日中值定理,所以,存在ξ
1
∈(0,a),ξ
2
∈(b,a+b),ξ
1
<ξ
2
,使得 [f(a+b)一f(b)]一[f(a)一f(0)]=af’(ξ
2
)一af’(ξ
1
). 因为f’(x)在(0,c)内单调减少,所以f’(ξ
2
)≤f’(ξ
1
),于是 [f(a+b)一f(b)]一[f(a)一f(0)]≤0, 即f(a+b)≤f(a)+f(b).
解析
转载请注明原文地址:https://kaotiyun.com/show/yDj4777K
0
考研数学二
相关试题推荐
设有直线试问L1与L2是否相交?若相交,求出交点;若不相交,求出两直线间的距离.
设总体X服从N(μ,σ2),分别是取自总体X的样本容量分别为10和15的两个样本均值,记p1=,则有()
给定椭球体在第一象限的部分.(1)求椭球体上任意点M0(x0,y0,z0)(x0>0,y0>0,z0>0)处椭球面的切平面.(2)在何处的切平面与三个坐标面围成的空间区域的体积最小.
求椭圆x2+4y2=4上一点,使其到直线2x+3y一6=0的距离最短.
设u=u(x,y)为二元可微函数,且满足,则当x≠0时,=()
在电源电压不超过200伏,在200—240伏和超过240伏三种情形下.某种电子元件损坏的概率分别为0.1,0.001和0.2,假设电源电压X服从正态分布N(220,252),求(1)该电子元件损坏的概率;(2)该电子元件损坏时,电源电压在200~240伏的
设n阶矩阵A的各行元素之和均为0,且A的伴随矩阵A*≠O,则线性方程组Ax=0的通解为__________.
设计算行列式|A|.
已知3阶矩阵A和三维向量x,使得x,Ax,A2x线性无关,且满足A3x=3Ax一2A2x.计算行列式|A+E|.
设f(x)=,求f(x)的间断点并判定其类型。
随机试题
在对管道FBE涂层补口时,采用的工艺是高压静电喷涂。
哪一种物质不是初级胆汁酸?
某企业第1年初向银行借款500万元,年利率为7%,银行规定每季度计息一次。若企业向银行所借本金与利息均在第4年末一次支付,则支付额为( )万元。
下列属于输出设备常见的有()。
借款人应当向银行如实提供所有开户行、账号及存贷款余额情况,使银行可以真实掌握借款人资金运行情况。银行通过调查、审查、检查了解借款人的生产经营情况,确保贷款的()
“如果你的两个得力下属一直吵架.你会怎么处理?”这类问题属于()。
哪一个运动员不想出现在奥运会的舞台上,并在上面尽情表演?如果以上陈述为真,以下哪项陈述必定为假?()
为了防止森林火灾,美国的森林专家想出了一个“以火防火”的好办法:要求森林管理人员定期选择风速小、气温低、温度大的天气,人为烧去乔木下面的小树、灌木、干枝和枯叶,以预防自然起火,并有助于扑灭森林大火。由此不可推出的结论是( )。
做产品的初心,一定可以归结到便利二字,因为一切新技术、能促使消费者大规模换代的新产品,大多是为了解决现实世界中_______的、不够便利的问题而生。因此,真正能做到了“简便”的产品,往往是_______的。填入画横线部分最恰当的一项是:
青藏铁路(Qinghai-TibetRailway)是西部大开发(WesternDevelopmentProgram)的标志性工程,是中国新世纪四大工程之一。该铁路东起青海西宁,西至西藏拉萨,全长1956公里。新建线路1110公里,于2001年6月2
最新回复
(
0
)