首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在闭区间[0,c]上连续,其导数f’(x)在开区间(0,c)内存在且单调减少,f(0)=0.试应用拉格朗日中值定理证明: f(a+b)≤f(a)+f(b), 其中常数a,b满足条件0≤a≤b≤a+b≤c.
设f(x)在闭区间[0,c]上连续,其导数f’(x)在开区间(0,c)内存在且单调减少,f(0)=0.试应用拉格朗日中值定理证明: f(a+b)≤f(a)+f(b), 其中常数a,b满足条件0≤a≤b≤a+b≤c.
admin
2018-11-11
65
问题
设f(x)在闭区间[0,c]上连续,其导数f’(x)在开区间(0,c)内存在且单调减少,f(0)=0.试应用拉格朗日中值定理证明:
f(a+b)≤f(a)+f(b),
其中常数a,b满足条件0≤a≤b≤a+b≤c.
选项
答案
用拉格朗日中值定理. 当a=0时,等号成立. 当a>0时,由于f(x)在区间[0,a]及[b,a+b]上满足拉格朗日中值定理,所以,存在ξ
1
∈(0,a),ξ
2
∈(b,a+b),ξ
1
<ξ
2
,使得 [f(a+b)一f(b)]一[f(a)一f(0)]=af’(ξ
2
)一af’(ξ
1
). 因为f’(x)在(0,c)内单调减少,所以f’(ξ
2
)≤f’(ξ
1
),于是 [f(a+b)一f(b)]一[f(a)一f(0)]≤0, 即f(a+b)≤f(a)+f(b).
解析
转载请注明原文地址:https://kaotiyun.com/show/yDj4777K
0
考研数学二
相关试题推荐
已知单位向量与三个坐标轴的夹角相等,B是点M(1,一3,2)关于点N(一1,2,1)的对称点,求
已知矩阵A与B相似,其中求x与y;
设3阶实对称矩阵A的秩为2,λ1=λ2=6是A的二重特征值.若α1=(1,1,0)T,α2=(2,1,1)T,α3=(一1,2,一3)T都是A的属于特征值6的特征向量.求矩阵A.
设对于半空间x>0内的任意光滑有向封闭曲面∑,都有xf(x)dydz一xyf(x)dzdx一e2xdxdy=0,其中函数f(x)在(0,+∞)内具有连续的一阶导数,且,求f(x).
验证α1=(1,一1,0)T,α2=(2,1,3)T,α3=(3,1,2)T为R3的一个基,并把β1=(5,0,7)T,β2=(一9,一8,一13)T用这个基线性表示.
设函数y=y(x)是由方程xy+ey=x+1确定的隐函数,求
已知随机变量X和Y相互独立,且都服从正态分布N(0,σ2),求常数R,使得概率P{≤R}=0.5.
设奇函数f(x)在[一1,1]上具有二阶导数,且f(1)=1,证明:存在ξ∈(0,1),使得f’(ξ)=1.
设,讨论y=f[g(χ)]的连续性.若有间断点并指出类型.
证明下列各题:
随机试题
某产妇,产后母乳喂养不顺利,改为人工喂养。产后一周左右产妇出现焦虑情绪,易激惹,有时暗自伤心落泪,伴有失眠、便秘等躯体症状。产后两周时,产妇的情绪越来越低落,回避他人,对自己缺乏信心,并因自己不会照顾小孩而有负罪感,有自杀念头。社区护士应提供的护理措施
A、HethinksBakeristoostrictinclass.B、HethinksBakerisnotstraightforward.C、Hethinkssheisunfair.D、Shedoesnotex
外科急腹症的特点,正确的是
当前城市规划管理工作的重要任务是()。
防水混凝土可通过调整配合比,或掺加外加剂、掺合料等措施配制而成,其抗渗等级不得小于(),其试配混凝土的抗渗等级应比设计要求提高()MPa。
导游的素质要求包括()。
幼儿园选择教育内容的依据是()。
《2016年政府工作报告》指出,改革是引领发展的第一动力,必须摆在国家发展全局的核心位置,深入实施创新驱动发展战略。()
Anewreportclaimsthatthemakersofsugar-laden(含糖)drinkssuchassodas,sportsdrinks,energydrinksandfruitdrinkstaked
A、TheterribleeffectsofdroughtonCalifornia.B、Newtechnologiesusedtopreventwaterwaste.C、Amandatoryorderonwatercu
最新回复
(
0
)