首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知3阶矩阵A的第一行是(a,b,c),a,b,c不全为零,矩阵且AB=O,求线性方程组Ax=0的通解.
已知3阶矩阵A的第一行是(a,b,c),a,b,c不全为零,矩阵且AB=O,求线性方程组Ax=0的通解.
admin
2019-12-26
30
问题
已知3阶矩阵A的第一行是(a,b,c),a,b,c不全为零,矩阵
且AB=O,求线性方程组Ax=0的通解.
选项
答案
由于AB=0,故r(A)+r(B)≤3,又由a,b,c不全为零,可知r(A)≥1. 当k≠9时,r(B)=2,于是r(A)=1; 当k=9时,r(B)=1,于是r(A)=1或r(A)=2. 对于k≠9,由AB=O可得 [*] 由于η
1
=(1,2,3)
T
,η
2
=(3,6,k)
T
线性无关,故η
1
,η
2
为Ax=0的一个基础解系,于是Ax=0的通解为 x=c
1
η
1
+c
2
η
2
,其中c
1
,c
2
为任意常数. 对于k=9,分别就r(A)=2和r(A)=1进行讨论. 如果r(A)=2,则Ax=0的基础解系由一个向量构成.又因为[*]所以Ax=0的通解为x=c
1
(1,2,3)
T
,其中c
1
为任意常数. 如果r(A)=1,则Ax=0的基础解系由两个向量构成.又因为A的第一行为(a,b,c)且a,b,c不全为零,所以Ax=0等价于ax
1
+bx
2
+cx
3
=0,不妨设a≠0,η
1
=(-b,a,0)
T
,η
2
=(-c,0,a)
T
是Ax=0的两个线性无关的解,故Ax=0的通解为 x=c
4
η
1
+c
5
η
2
,其中c
4
,c
5
为任意常数.
解析
转载请注明原文地址:https://kaotiyun.com/show/yJD4777K
0
考研数学三
相关试题推荐
设n是正整数,则=________.
xy一yx,则y’=________.
设随机试验成功的概率p=0.20.现在将试验独立地重复进行100次,则试验成功的次数介于16与32之间的概率α=________。(Ф(3)=0.9987,Ф(1)=0.8413)
设A,B都是凡阶矩阵,E—AB可逆.证明E—BA也可逆,并且(E—BA)-1=E+B(E—AB)-1A.
设矩阵A满足A2+A-4E=O,则(A-E)-1=_______.
设u=f(x,y,z)有连续的偏导数,y=y(x),z=z(x)分别由方程exy一y=0与ez一xz=0确定,求
下列反常积分其结论不正确的是
设f′(sin2x)=cos2x+tan2x,求f(x)(0<x<1).
设f’(sin2x)=cos2x+tan2x,求f(x),其中0<x<1.
随机试题
Successinthelabdoesn’talwaysmeanimmediatesuccessonalarge________.
A.干烤消毒法B.压力蒸汽灭菌法C.紫外线消毒法D.煮沸法E.过滤除菌法空气可用的消毒方法是
发热后第2天出疹的是
某市疾病控制中心,欲找出对患者的生命威胁最大的疾病,以便制定防治对策,需要计算和评价的统计指标为
A、降逆止呕B、润肠通便C、利水消肿D、燥湿化痰E、制酸止痛瓦楞子除能消痰软坚外,又能
工程咨询的投资项目包括(),不同类型项目的咨询评价方法是不同的。
玻璃钢门窗的生产方式有()。
某机械公司经销一种小型机械的销售单价为1500元/台,单位商品的变动成本为1250元/台,固定成本分摊为6万元。公司要求该种小型机械在计划期内实现目标盈利额为4万元。求计划期的该小型机械内保利销售量为多少台()。
[音]奏鸣曲
TheMoralityTestA)FromcancertoAlzheimer’s(早老性痴呆病)todiabetes,advancesingeneticsciencemeanthatmanyofusares
最新回复
(
0
)