首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)连续且恒大于零, 其中Ω(t)={x,y,z)|x2+y2+z2≤t2},D(t)={(x,y)|x2+y2≤t2}. (1)讨论F(t)在区间(0,+∞)内的单调性. (2)证明当t>0时,F(t)>G(t).
设函数f(x)连续且恒大于零, 其中Ω(t)={x,y,z)|x2+y2+z2≤t2},D(t)={(x,y)|x2+y2≤t2}. (1)讨论F(t)在区间(0,+∞)内的单调性. (2)证明当t>0时,F(t)>G(t).
admin
2016-01-15
63
问题
设函数f(x)连续且恒大于零,
其中Ω(t)={x,y,z)|x
2
+y
2
+z
2
≤t
2
},D(t)={(x,y)|x
2
+y
2
≤t
2
}.
(1)讨论F(t)在区间(0,+∞)内的单调性.
(2)证明当t>0时,F(t)>
G(t).
选项
答案
(1)因为 [*] ∫
0
t
f(r
2
)r
2
dr∫
0
t
drf(r
2
)dr一[∫
0
t
f(r
2
)rdr]
2
>0. 令 g(t)=∫
0
t
f(r
2
)r
2
dr∫
0
t
f(r
2
)dr一[f(r
2
)rdr]
2
, 则 g’(t)=f(t
2
)∫
0
t
f(r
2
)(t一r)
2
dr>0, 故g(t)在(0,+∞)内单调增加. 因为g(t)在t=0处连续,所以当t>0时,有g(t)>g(0).又g(0)=0,故当t>0时,g(t)>0. 因此,当t>0时,F(t)>[*]G(t).
解析
转载请注明原文地址:https://kaotiyun.com/show/yJw4777K
0
考研数学一
相关试题推荐
设a是n维单位列向量,A=E-aaT.证明:r(A)<n.
设三阶矩阵A=(α,γ1,γ2),B=(β,γ1,γ2),其中α,β,γ1,γ2是三维列向量,且|A|=3,|B|=4,则|5A-2B|=________.
交换积分次序并计算.
求z=x2+12xy+2y2在区域4x2+y2≤25上的最值。
设在(-∞,+∞)内连续曲线y=f(x)关于点(a,0)(a≠0)对称,则积分∫a+1a-1f(x)dx=________。
由题设,积分区域D如右图阴影所示,其在D1为辅助性半圆形区域,[*]
斜边长为2a的等腰直角三角形平板,铅直地沉没在水中,且斜边与水面相齐,设重力加速度为g,水密度为ρ,则该平板一侧所受的水的压力为________.
某保险公司设置某一险种,规定每一保单有效期为一年,有效理赔一次,每个保单收取保费500元,理赔额为40000元.据估计每个保单索赔概率为0.01,设公司共卖出这种保单8000个,求该公司在该险种上获得的平均利润.
(1999年试题,八)设S为椭球面的上半部分,点P(x,y,z)∈S,π为S在点P处的切平面,p(x,y,z)为点0(0,0,0)到平面π的距离,求
随机试题
阅读《宝黛吵架》中的一段文字,然后回答下列小题。谁知这个话传到宝玉黛玉二人耳内,他二人竟从来没有听见过“不是冤家不聚头”的这句俗话儿,如今忽然得了这句话,好似参禅的一般,都低头细嚼这句话的滋味儿,不觉的潸然泪下。虽然不曾见面,却一个在潇湘馆临风洒泪
蛋白质溶液的稳定因素是
女,63岁,脑卒中后右侧偏瘫就诊康复科,体格检查:神志清楚,言语清晰,左侧肢体活动自如。右侧上下肚肌张力增高,被动活动右上肢,在关节活动范围后50%范围内出现突然卡住,然后在关节活动范围的后50%均呈现最小的阻力;被动活动左、右下肢,在关节活动范围之末时出
能明显提高高密度脂蛋白HDL的药物是
某妇女,35岁,妊娠42周,临产10小时,检查:胎心音120次/分,宫口3cm,有水囊感,S=0,B超双顶径9cm,羊水深度2.5cm,其处理以下列哪项为最佳
建筑工地上用以拌制混合砂浆的石灰膏必须经过一定时间的陈伏,这是为了消除()的不利影响。
民事法律关系的终止,是指某类民事法律关系主体之间的权利义务不复存在,彼此丧失了( )。法律关系内容变更中,一方的权利增加,也就意味着另一方的( )。
下列物品不属于民用危险品的是()。
根据以下资料,回答以下问题。2012年1~8月,北京市开发区累计完成招商项目2730个,比上年同期增长21.5%:项目总投资,597.5亿元,同比下降13.4%;企业注册资本435.8亿元,同比下降7.7%;合同外资金额10.3亿美元,同比下降3
计算机软件可划分为系统软件和应用软件两大类,以下哪个软件系统不属于系统软件?
最新回复
(
0
)