设k>0,讨论常数k的取值,使f(x)=xlnx+k在其定义域内没有零点、有一个零点及两个零点。

admin2017-12-31  36

问题 设k>0,讨论常数k的取值,使f(x)=xlnx+k在其定义域内没有零点、有一个零点及两个零点。

选项

答案f(x)的定义域为(0,+∞),[*]. 由f’(x)=lnx+1=0,得驻点为x=[*]为f(x)的极小值点,也为最小值点,最小值为[*]. (1)当k>[*]时,函数f(x)在(0,+∞)内没有零点; (2)当k=[*]时,函数f(x)在(0,+∞)内有唯一零点x=[*]; (3)当0<k<[*]时,函数f(x)在(0,+∞)内有两个零点,分别位于(0,[*]+∞)内.

解析
转载请注明原文地址:https://kaotiyun.com/show/yXX4777K
0

最新回复(0)