首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
判断下列结论是否正确?为什么? (Ⅰ)若函数f(x),g(x)均在x0处可导,且f(x0)=g(x0),则f’(x0)=g’(x0); (Ⅱ)若x∈(x0-δ,x0+δ),x≠x0时f(x)=g(x),则f(x)与g(x)在x=x0处有相同
判断下列结论是否正确?为什么? (Ⅰ)若函数f(x),g(x)均在x0处可导,且f(x0)=g(x0),则f’(x0)=g’(x0); (Ⅱ)若x∈(x0-δ,x0+δ),x≠x0时f(x)=g(x),则f(x)与g(x)在x=x0处有相同
admin
2016-10-20
34
问题
判断下列结论是否正确?为什么?
(Ⅰ)若函数f(x),g(x)均在x
0
处可导,且f(x
0
)=g(x
0
),则f’(x
0
)=g’(x
0
);
(Ⅱ)若x∈(x
0
-δ,x
0
+δ),x≠x
0
时f(x)=g(x),则f(x)与g(x)在x=x
0
处有相同的可导性;
(Ⅲ)若存在x
0
的一个邻域(x
0
-δ,x
0
+δ,使得x∈(x
0
-δ,x
0
+δ)时f(x)=g(x),则f(x)与g(x)在x
0
处有相同的可导性.若可导,则f’(x
0
)=g’(x
0
).
选项
答案
(Ⅰ)不正确.函数在某点的可导性不仅与该点的函数值有关,还与该点附近的函数值有关.仅有f(x
0
)=g(x
0
)不能保证f’(x
0
)=g’(x
0
).正如曲线y=f(x)与y=g(x)可在某处相交但并不相切. (Ⅱ)不正确.例如f(x)=x
2
, g(x)=[*]显然,当x≠0时f(x)=g(x),但f(x)在点x=0处可导,因为g(x)在点x=0不连续,从而g(x)在点x=0处不可导. (Ⅲ)正确.由假设可得当x∈(x
0
-δ,x
0
+δ)时 [*] 因此,当x→x
0
时等式左右端的极限或同时存在或同时不存在,而且若存在则相等.再由导数定义即可得出结论.
解析
转载请注明原文地址:https://kaotiyun.com/show/ycT4777K
0
考研数学三
相关试题推荐
[*]
A、 B、 C、 D、 D
[*]
血液试验ELISA(enzyme-linkedimmunosorbentassay,酶联免疫吸附测定)是现今检验艾滋病病毒的一种流行方法.假定ELISA试验能正确测出确实带有病毒的人中的95%存在艾滋病病毒,又把不带病毒的人中的1%不正确地识别为存
一批产品共有a十b个,其中a个正品,b个次品.今采用不放回抽样n次,问抽到的n个产品里恰有k个是正品的概率是多少?
α1,α2是向量组(Ⅱ)的一个极大无关组,(Ⅱ)的秩为2,故(Ⅰ)的秩为2.由于(Ⅰ)线性相关,从而行列式|β1,β2,β3|=0,由此解得a=3b;又β3可由向量组(Ⅱ)线性表示,从而β3可由α1,α2线性表示,所以向量组α1,α2,β3线性相关,于是行
设向量组α1,α2,…,αm线性无关,向量β1可用它们线性表示,β2不能用它们线性表示,证明向量组α1,α2,…,αm,λβ1+β2(λ为常数)线性无关.
利用函数的凹凸性,证明下列不等式:
求下列微分方程的通解:(1)y〞=xex;(2)(1+x2)y〞=1;(3)y〞+yˊ=x2;(4)y〞=1+yˊ2;(5)x2y〞=yˊ2+2xyˊ;(6)(1-y)y〞+2yˊ2=0;(7);(8)y〞+yˊ2=
研究下列函数的连续性,如有间断点,说明间断点的类型:
随机试题
根据营业税法律制度规定,无需缴纳营业税的事项是_________。
当远端回肠被切除后将导致胆汁酸在
成本法特别适用于那些既无收益又很少发生交易的房地产估价,这类房地产主要包括()等。
投资控制的动态原理表达的含义不包括( )。
A类库存要求()。
(1)请你解释为什么参加者会对课程有截然不同的反应?(2)课程不设固定的结构模式有什么好处?
关于“学习”有两种观点:其一,“人之岁月精神有限,诵说中度一日,习行中错一日;纸墨上多一分,身世上少一分。”其二,“教人必欲使其读尽天下书,将道仝看在书上,将学全看在读上。”这两种观点没有处理好()。
张三和李四共有四间房屋,租给王五开办一商店。现李四为担保赵六所负的债务,将其对上述四间房屋中的共有份额抵押给甲,该抵押已得到张三同意,并在通知了王五后在房屋管理局作了登记。请指出下列哪些表述是正确的()。
下列各项中对“信息”理解不正确的一项是:本文说明的主旨是:
A、Itisbasedontheinterviewswithpopularsingers.B、Itistointroducesomefamoussongwriters.C、Ithelpstounderstandthe
最新回复
(
0
)